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Preface

Preface

In this volume I present some examples of space integrals, cf. also Calculus 2b, Functions of Several
Variables. Since my aim also has been to demonstrate some solution strategy I have as far as possible
structured the examples according to the following form

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

One is used to from high school immediately to proceed to I. Implementation. However, examples
and problems at university level are often so complicated that it in general will be a good investment
also to spend some time on the first two points above in order to be absolutely certain of what to do
in a particular case. Note that the first three points, ADI, can always be performed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of ∧ I shall either write
“and”, or a comma, and instead of ∨ I shall write “or”. The arrows ⇒ and ⇔ are in particular
misunderstood by the students, so they should be totally avoided. Instead, write in a plain language
what you mean or want to do.

It is my hope that these examples, of which many are treated in more ways to show that the solutions
procedures are not unique, may be of some inspiration for the students who have just started their
studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
13th October 2007
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1 Space integral, rectangular coordinates

Example 1.1 Compute in each of the following cases the given space integral over a point set

A = {(x, y, z) | (x, y) ∈ B, Z1(x, y) ≤ z ≤ Z2(x, y)}.

1) The space integral
∫

A
xy2z dΩ, where the plane point set B is given by x ≥ 0, y ≥ 0 and x+ y ≤ 1,

and where Z1(x, y) = 0 and Z2(x, y) = 2 − x − y.

2) The space integral
∫

A
xy2z3 dΩ, where the plane point set B is given by 0 ≤ x ≤ y ≤ 1, and where

Z1(x, y) = 0 and Z2(x, y) = xy.

3) The space integral
∫

A
z dΩ, where the plane point set B is given by 0 ≤ x ≤ 6 and 2−x ≤ y ≤ 3− x

2
,

and where Z1(x, y) = 0 and Z2 =
√

16 − y2.

4) The space integral
∫

A
y dΩ, where the plane point set B is given by −2 ≤ y ≤ 1 and y2 ≤ x ≤ 2−y,

and where Z1(x, y) = 0 and Z2(x, y) = 4 − 2x − 2y.

5) The space integral
∫

A

1
x2y2z2

dΩ, where the plane point set B is given by 1 ≤ x ≤ √
3 and

1
1 + x2

≤ y ≤ 1, and where Z1(x, y) =
1

1 + x2
and Z2(x, y) = 1 + x2.

6) The space integral
∫

A
yz dΩ, where the plane point set B is given by 0 ≤ x ≤ 1 and 0 ≤ y ≤ x, and

where Z1(x, y) = 0 and Z2(x, y) = 2 − 2x.

[Cf. Example 1.2.6.]

7) The space integral
∫

A
xz dΩ, where the plane point set B is given by 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, and

where Z1(x, y) = 0 and Z2(x, y) = 1 − y.

[Cf. Example 1.2.7.]

8) The space integral
∫

A
z dΩ, where the plane point set B is given by

√
x2 + y2 ≤ 2, and where

Z1(x, y) = 0 and Z2(x, y) = 2 −
√

x2 + y2.

[Cf. Example 1.2.8]

A Space integral in rectangular coordinates.

D Apply the theorem of reductions.

 Space integral, rectangular coordinates
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Figure 1: The domain B of Example 1.1.1.

I 1) By the theorem of reduction,∫
A

xy2z dΩ =
∫

B

xy2

{∫ 2−x−y

0

z dz

}
dxdy =

1
2

∫
B

x2y(2 − x − y)2 dxdy

=
1
2

∫
B

x2y
{
(2 − x)2 − 2(2 − x)y + y2

}
dxdy

=
1
2

∫ 1

0

x2

{∫ 1−x

0

[
(2 − x)2y − 2(2 − x)y2 + y3

]
dy

}
dx

=
1
2

∫ 1

0

x2

[
1
2
(2 − x)2y2 − 2

3
(2 − x)y3 +

1
4

y4

]1−x

y=0

dx

=
1
24

∫ 1

0

x2
{
6(2−x)2(1−x)2−8(2−x)(1−x)3+3(1−x)4

}
dx

=
1
24

∫ 1

0

x2(1−x)2
{
6(4−4x+x2)−8(2−3x+x2)+3(1−2x+x2)

}
dx

=
1
24

∫ 1

0

(x4 − 2x3 + x2)(x2 − 6x + 11) dx

=
1
24

∫ 1

0

{
x6 − 8x5 + 24x4 − 28x3 + 11x2

}
dx

=
1
24

[
1
7

x7 − 4
3

x6 +
24
5

x5 − 7x4 +
11
3

x3

]1
0

=
1
24

(
1
7
− 4

3
+

24
5

− 7 +
11
3

)
=

1
24

(
1
7

+ 2 +
1
3

+ 5 − 1
5
− 7
)

=
1
24

(
1
3
− 1

5
+

1
7

)
=

1
24

(
2
15

+
1
7

)
=

29
24 · 105

=
29

2520
.

 Space integral, rectangular coordinates
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Figure 2: The domain B of Eksempel 1.1.2.

2) By the theorem of reduction,∫
A

xy2z3 dΩ =
∫

B

xy2

{∫ xy

0

z3 dz

}
dxdy =

1
4

∫
B

xy
[
z4
]xy

z=0
dxdy =

1
4

∫
B

x5y6 dxdy

=
1
4

∫ 1

0

y6

{∫ y

0

x5 dx

}
dy =

1
24

∫ 1

0

y12 dy =
1

24 · 13
=

1
312

.
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Figure 3: The domain B of Example 1.1.3.

 Space integral, rectangular coordinates
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3) By the theorem of reduction,∫
A

z dΩ =
∫

B

{∫ √
16−y2

0

z dz

}
dxdy =

1
2

∫
B

(16 − y2) dxdy

=
1
2

∫ 6

0

{∫ 3− x
2

2−x

(16 − y2) dy

}
dx =

1
2

∫ 6

0

[
16y − 1

3
y3

]3− x
2

y=2−x

dx

=
1
2

∫ 6

0

{
16
(
3 − x

2

)
− 1

3

(
3 − x

2

)3

− 16(2 − x) +
1
3
(2 − x)3

}
dx

=
1
2

∫ 6

0

{
16 + 8x +

1
24

(x − 6)2 − 1
3

(x − 2)3
}

dx

=
1
2

[
16x + 4x2 +

1
96

(x − 6)4 − 1
12

(x − 2)4
]6
0

=
1
2

{
96 + 144 + 0 − 44

12
− 64

96
+

24

12

}
=

1
2

{
240 − 64

3
− 216

16
+

4
3

}

=
1
2

{
220 − 27

2

}
=

413
4

.

–2
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1
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y

1 2 3 4
x

Figure 4: The domain B of Example 1.1.4.

 Space integral, rectangular coordinates
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4) By the theorem of reduction,∫
A

y dΩ =
∫

B

y

{∫ 4−2x−2y

0

dz

}
dxdy =

∫
B

y(4 − 2x − 2y) dxdy

=
∫ 1

−2

y

{∫ 2−y

y2
(4 − 2x − 2y) dx

}
dy =

∫ 1

−2

y
[
4x − x2 − 2xy

]2−y

x=y2 dy

=
∫ 1

−2

y
{
4(2−y)−(2−y)2−2y(2 −y)−4y2+y4+2y3

}
dy

=
∫ 1

−2

y
{
8−4y−4+4y−y2−4y+2y2−4y2+2y3+y4

}
dy

=
∫ 1

−2

(y5 + 2y4 − 3y3 − 4y2 + 4y) dy =
[
1
6

y6 +
2
5

y5 − 3
4

y4 − 4
3

y3 + 2y2

]1
−2

=
1
6

+
2
5
− 3

4
− 4

3
+2− 26

6
+

2
5
· 25+

3
4
· 24− 4

3
· 23 − 8 = −81

20
.

 Space integral, rectangular coordinates
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Figure 5: The domain B of Example 1.1.5.

5) First note that the z-integral does not depend on y. By exploiting this observation we get by
the theorem of reduction,∫

A

1
x2y2z2

dΩ =
∫ √

3

1

1
x2

{∫ 1

1
1+x2

1
y2

(∫ 1+x2

1
1+x2

1
z2

dz

)
dy

}
dx

=
∫ √

3

1

1
x2

[
−1

y

]1
1

1 + x2

·
[
−1

z

]1+x2

1
1+x2

dx

=
∫ √

3

1

1
x2

(
1 + x2 − 1

) · (1 + x2 − 1
1 + x2

)
dx

=
∫ √

3

1

(
1 + x2 − 1

1 + x2

)
dx =

[
x3

3
+ x − Arctan x

]√3

1

=
3
√

3
3

+
√

3 − Arctan
√

3 − 1
3
− 1 + Arctan 1

= 2
√

3 − 4
3
− π

3
+

π

4
= 2

√
3 − 4

3
− π

12
.
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Figure 6: The domain B of Example 1.1.6.
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6) By the theorem of reduction,∫
A

yz dΩ =
∫ 1

0

{∫ x

0

y

(∫ 2−2x

0

z dz

)
dy

}
dx =

∫ 1

0

[
y2

2

]x

0

·
[
z2

2

]2−2x

0

dx

=
1
4

∫ 1

0

x2 · (2 − 2x)2 dx =
∫ 1

0

x2(1 − x2) dx =
∫ 1

0

x2(x2 − 2x + 1) dx

=
∫ 1

0

(x4 − 2x3 + x2) dx =
1
5
− 2

4
+

1
3

=
6 − 15 + 10

30
=

1
30

.

Remark. The domain is also described by

0 ≤ z ≤ 2, 0 ≤ y ≤ x ≤ 1 − z

2
,

cf. Example 1.2.6. The two examples therefore give the same result. ♦

 Space integral, rectangular coordinates
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7) Here, B = [0, 1] × [0, 1], thus it follows by the theorem of reduction that∫
A

xz dΩ =
∫ 1

0

x dx ·
∫ 1

0

{∫ 1−y

0

z dz

}
dy =

1
2

∫ 1

0

1
2

(1 − y)2 dy =
1
4

∫ 1

0

t2 dt =
1
12

.

8) Here, B is the closed disc of centrum (0, 0) and radius 2. By using the theorem of reduction in
semi-polar coordinates,∫

A

z dΩ = 2π

∫ 2

0

{∫ 2−�

0

z dz

}
� d� = π

∫ 2

0

(2 − �)2� d� = π

∫ 2

0

(�3 − 4�2 + 4�) d�

= π

[
�4

4
− 4

3
�3 + 2�2

]2
0

= π

{
4 − 32

3
+ 8
}

=
4π

3
.

Example 1.2 Calculate in each of the following cases the given space integral over a point set

A = {(x, y, z) | α ≤ z ≤ β, (x, y) ∈ B(z)}.
1) The space integral

∫
A

z2 dΩ, where B(z) is given by |x| ≤ z and |y| ≤ 2z for z ∈ [0, 1].

2) The space integral
∫

A
xz dΩ, where B(z) is given by 0 ≤ x, 0 ≤ y and x + y ≤ z2 for z ∈ [0, 1].

3) The space integral
∫

A
xy2z dΩ, where B(z) is given by 0 ≤ x, 0 ≤ y and x+y ≤ 2−z for z ∈ [1, 2].

4) The space integral
∫

A

1
xy2

dΩ, where B(z) is given by 1 ≤ x ≤ z and z ≤ y ≤ z for z ∈ [1, 3].

5) The space integral
∫

A

(
sin z

z

)2

dΩ, where B(z) is given by |x| + |y| ≤ |z| for z ∈
[
−π

2
,
π

2

]
.

6) The space integral
∫

A
yz dΩ, where B(z) is given by 0 ≤ y ≤ x ≤ 1 − z

2
for z ∈ [0, 2].

[Cf. Example 1.1.6.]

7) The space integral
∫

A
xz dΩ, where B(z) is given by 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 − z for z ∈ [0, 1].

[Cf. Example 1.1.7.]

8) The space integral
∫

A
z dΩ, where B(z) is given by x2 + y2 ≤ (2 − z)2 for z ∈ [0, 2].

[Cf. Example 1.1.8.]

A Space integrals in rectangular coordinates, where the domain is sliced at height, B(z).

D Whenever it is necessary, sketch B(z). Then apply the second theorem of reduction.

I 1) Here,

B(z) = {(x, y) | −z ≤ x ≤ z, −2z ≤ y ≤ 2z} = [−z, z] × [−2z, 2z],

which is a rectangle for every z ∈ ]0, 1] of the area

area{B(z)} = 8z2.

We get by reduction,∫
A

z2 dΩ =
∫ 1

0

x2

{∫
B(z)

dxdy

}
dz =

∫ 1

0

z2 · area{B(z)} dz =
∫ 1

0

8z4 dz =
8
5
.

 Space integral, rectangular coordinates
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2) Here

B(z) = {(x, t) | 0 ≤ x, 0 ≤ y, x + y ≤ z2}
is a triangle for every z ∈ ]0, 1], namely the lower triangle of the square [0, z2] × [0, z2], when
this is cut by a diagonal from the upper left corner to the lower right corner.
We get by the theorem of reduction,∫

A

xz dΩ =
∫ 1

0

z

{∫
B(z)

x dxdy

}
dz =

∫ 1

0

z

{∫ z2

0

x

[∫ z2−x

0

dy

]
dx

}
dz

=
∫ 1

0

z

{∫ z2

0

(xz2 − x2) dx

}
dz =

∫ 1

0

z

[
1
2

x2z2 − 1
3

x3

]z2

0

dz =
∫ 1

0

1
6

z7 dz =
1
48

.

3) Here

B(z) = {(x, y) | 0 ≤ x, 0 ≤ y, x + y ≤ 2 − z}
is a triangle for every z ∈ [1.2[, namely the lower triangle of the square [0, 2 − z] × [0, 2 − z],
when this is cut by a diagonal from the upper left corner to the lower right corner.
Then by the theorem of reduction,∫

A

xy2z dΩ =
∫ 2

1

z

{∫
B(z)

xy2 dxdy

}
dz =

∫ 2

1

z

{∫ 2−z

0

y2

[∫ 2−z−y

0

x dx

]
dy

}
dz

=
1
2

∫ 2

1

z

{∫ 2−z

0

y2(z − 2 + y)2 dy

}
dz

=
1
2

∫ 2

1

{(z−2)+2}
{∫ 2−z

0

[
(z−2)2y2+2(z−2)y3+y4

]
dy

}
dz

=
1
2

∫ 2

1

{(z − 2) + 2}
[
1
3
(z − 2)2y3 +

1
2
(z − 2)y4 +

1
5

y5

]2−z

y=0

dz

=
1
2

∫ 2

1

{(z − 2) + 2)} ·
(
−1

3
+

1
2
− 1

5

)
(z − 2)5 dz

= − 1
60

∫ 2

1

{
(z − 2)6 + 2(z − 2)5

}
dz

= − 1
60

[
1
7

(z − 2)7 +
1
3

(z − 2)6
]2
1

= − 1
60

(
1
7
− 1

3

)
=

4
3 · 7 · 60

=
1

315
.

4) Here

B(z) = {(x, y) | 1 ≤ x ≤ z, z ≤ y ≤ 2z}, z ∈ [1, 3],

which is sketched on the figure.
We get by the theorem of reduction,∫

A

1
xy2

dΩ =
∫ 3

1

{∫
B(z)

1
xy2

dxdy

}
dz =

∫ 3

1

{∫ 2

1

1
x

[∫ 2z

z

1
y2

dy

]
dx

}
dz

=
∫ 3

1

{∫ z

1

1
x

[
−1

y

]2z

z

dx

}
dz =

∫ 3

1

1
2z

[lnx]zx=1dz =
1
4
[
(ln z)2

]3
1

=
1
4

(ln 3)2.

 Space integral, rectangular coordinates
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Figure 7: The domain B(z) of Example 1.2.4.
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Figure 8: The domain B(z) of Example 1.2.5.

5) By a continuous extension the integrand is put equal to 1 for z = 0. Note that B(z) is a square
of edge length

√
2|z|, hence of the area

area{B(z)} = 2z2.

Then by the theorem of reduction,∫
A

(
sin z

z

)2

dΩ =
∫ π

2

−π
2

(
sin z

z

)2
{∫

B(z)

dxdy

}
dz =

∫ π
2

−π
2

(
sin z

z

)
areal{B(z)} dz

=
∫ π

2

−π
2

(
sin z

z

)2

· 2z2 dz =
∫ π

2

−
π

2

2 sin2 z dz

=
∫ π

2

−π
2

(1 − cos 2z) dz = π −
[
1
2

sin 2z

]π
2

−π
2

= π.

6) Here

B(z) =
{

(x, y)
∣∣∣ 0 ≤ y ≤ x ≤ 1 − z

2

}

 Space integral, rectangular coordinates
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Figure 9: The domain B(z) of Example 1.2.6.

is a triangle for every z ∈ [0, 2[.

We get by the second theorem of reduction,∫
A

yz dΩ =
∫ 2

0

z

{∫
B(z)

y dS

}
dz =

∫ 2

0

z

{∫ 1− z
2

0

(∫ x

0

y dy

)
dx

}
dz

=
∫ 2

0

z

{∫ 1− z
2

0

1
2

x2 dx

}
dz =

1
6

∫ 2

0

z
(
−z

2

)3

dz

=
1
6

∫ 2

0

z

(
1 − 3

2
z +

3
4

z2 − 1
8

z3

)
dz =

1
6

∫ 2

0

(
z − 3

2
z2 +

3
4

z3 − 1
8

z4

)
dz

=
1
6

[
1
2

z2 − 1
2

z3 +
3
16

z4 − 1
40

z5

]2
0

=
1
6

(
4
2
− 8

4
+

3
16

· 16 − 1
40

· 32
)

=
1
6

(
2 − 4 + 3 − 4

5

)
=

1
6

(
1 − 4

5

)
=

1
30

.

Remark. The domain is also described by

0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ 2 − 2x,

cf. Example 1.1.6, and we have computed the integral in two different ways (and luckily
obtained the same result). ♦

7) The have the same integrand and the same domain as in Example 1.1.7, so we must get
the same result. The only difference is that we here cut the domain into slices, while we in i
Example 1.1 used the “method of upright posts”.

We get by the theorem of reduction,∫
A

xz dΩ =
∫ 1

0

x dx ·
∫ 1

0

z

{∫ 1−z

0

dy

}
dz =

1
2

∫ 1

0

z(1 − z) dz

=
1
2

∫ 1

0

{z − z2}dz =
1
2

{
1
2
− 1

3

}
=

1
2
· 1
6

=
1
12

.

 Space integral, rectangular coordinates
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8) We have the same integrand and the same set as in Example 1.1.8, so we must get the same
result. The only difference is that we here cut the domain into slices, while we in Example 1.1
used the “method of upright posts”. Also note that we use polar coordinates in each slice, so
the example should actually be moved to Example 3.1.

We get by the theorem of reduction in semi-polar coordinates and the change of variables
u = 2 − z that∫

A

z dΩ =
∫ 2

0

z · π(2 − z2) dz = π

∫ 2

0

(2 − u)u2 du = π

∫ 2

0

(2u2 − u3) du = π

[
2
3

u3 − 1
4

u4

]

= π

{
16
3

− 16
4

}
=

16
12

π =
4π

3
.
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Example 1.3 Let A be the tetrahedron of the vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1). Compute
in each of the following cases the space integral∫

A

f(x, y, z) dΩ,

where

1) f(x, y, z) = x + y + z,

2) f(x, y, z) = cos(x + y + z),

3) f(x, y, z) = exp(x + y + z),

4) f(x, y, z) = (1 + x + y + z)−3,

5) f(x, y, z) = x2 + y2 + z2,

6) f(x, y, z) = xy − yz.

A Space integrals over a tetrahedron.

D Consider the tetrahedron as a cone with (0, 0, 0) as its top point in the first four questions, where
the natural variable is x + y + z. Therefore, first analyze this special case. Compute the space
integral with respect to this variable. Alternatively, compute the triple integral. There is also the
possibility of some arguments of symmetry.

0

0.2

0.4

0.6

0.8

1

z

0.2

0.4

0.6

0.8

1

y

0.2

0.4

0.6

0.8

1

x

Figure 10: The tetrahedron of the vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1).

I Preparations. The distance from (0, 0, 0) to the plane x + y + z = 1 is√(
1
3

)2

+
(

1
3

)2

+
(

1
3

)2

=
1√
3
.

Thus we can consider the tetrahedron as a cone of height h =
1√
3

and with the surface where

x + y + z = 1 as its base. the area of this base is

1
2
|(1, 0, 0) − (0, 1, 0)| ·

∣∣∣∣(0, 0, 1) −
(

1
2
,
1
2
, 0
)∣∣∣∣ = 1

2

√
2 ·
√

1
4

+
1
4

+ 1 =
1
2

√
2 ·
√

3
2

=
√

3
2

.
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Intersect the tetrahedron by the plane x + y + z = t, t ∈ [0, 1], parallel to the base. Then the

distance from the new triangle B(t) to the top point (0, 0, 0) is
t√
3
, thus the area of this triangle

B(t) is due to the similarity given by

area(B(t)) =

(
1/
√

3
1/
√

3

)2

t2
√

3
2

=
√

3
2

t2, t ∈ [0, 1].

If the integrand f(x, y, z) = g(x + y + z) is a function in t = x + y + z, we even get the simpler
formula

(1)
∫

A

f(x, y, z) dΩ =
1√
3

∫ 1

0

g(t) area(B(t)) dt =
1
2

∫ 1

0

t2g(t) dt.

Clearly, (1) can be applied in the first four questions.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 11: The projection of B′(z) onto the XY -plane.

1) From f(x, y, z) = x + y + z = t = g(t) and (1) follows that∫
A

(x + y + z) dΩ =
1
2

∫ 1

0

t2g(t) dt =
1
2

∫ 1

0

t3 dt =
1
8
.

Alternatively the plane z = constant, z ∈ [0, 1[, intersects the tetrahedron in a set, the
projection of which onto the XY -plane is

B′(z) = {(x, y) | x ≥ 0, y ≥ 0, x + y ≤ 1 − z}.
Hence by more traditional calculations,

∫
A

(x + y + z) dΩ =
∫ 1

0

z · area(B′(z)) dz +
∫ 1

0

{∫
B′(z)

(x + y) dx dy

}
dz.

It follows by the symmetry that∫
B′(z)

x dx dy =
∫

B′(z)

y dx dy,
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hence∫
A

(x + y + z) dΩ =
∫ 1

0

z · 1
2
(1−z)2dz+2

∫ 1

0

{∫
B′(z)

x dx dy

}
dz

=
1
2

∫ 1

0

(1−t)t2dt+2
∫ 1

0

{∫ 1−z

0

x

{∫ 1−x−z

0

dy

}
dx

}
dz

=
1
2

[
1
3

t3− 1
4

t4
]1
0

+2
∫ 1

0

{∫ 1−z

0

x[(1−z)−x]dx

}
dz

=
1
24

+ 2
∫ 1

0

[
1
2

x2(1 − z) − 1
3

x3

]1−z

0

dz

=
1
24

+
2
6

∫ 1

0

(1 − z)3dz =
1
24

+
1
12
]−(1 − z)4

]1
0

=
1
24

+
1
12

=
1
8
.

2) It follows from f(x, y, z) = cos(x + y + z) = cos t = g(t) and (1) that∫
A

cos(x + y + z) dΩ =
1
2

∫ 1

0

t2 cos t dt =
1
2
[
t2 sin t + 2t cos t − 2 sin t

]1
0

=
1
2

sin 1 + cos 1 − sin 1 = cos 1 − 1
2

sin 1.

 Space integral, rectangular coordinates
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Alternatively, we get by more traditional calculations, where we use the same set B ′(z) as
in 1),∫

A

cos(x + y + z) dΩ =
∫ 1

0

{∫
B′(z)

cos(x + y + z) dx dy

}
dz

=
∫ 1

0

{∫ 1−z

0

{∫ 1−z−x

0

cos(x + y + z) dy

}
dx

}
dz

=
∫ 1

0

{∫ 1−z

0

[sin(x + y + z)]1−z−x
y=0 dx

}
dz =

∫ 1

0

{∫ 1−z

0

{sin 1 − sin(x + z)}dx

}
dz

= sin 1 ·
∫ 1

0

(1 − z) dz +
∫ 1

0

[cos(x + z)]1−z
x=0dz =

1
2

sin 1 +
∫ 1

0

{cos 1 − cos z}dz

=
1
2

sin 1 + cos 1 − sin 1 = cos 1 − 1
2

sin 1.

3) It follows from f(x, y, z) = exp(x + y + z) = et = g(t) and (1) that∫
A

exp(x + y + z) dΩ =
1
2

∫ 1

0

t2et dt =
1
2
[
t2et − 2et + 2et

]1
0

=
1
2

(e − 2e + 2e − 2) =
1
2

(e − 2).

Alternatively, by traditional computations,∫
A

exp(x + y + z) dΩ =
∫ 1

0

{∫ 1−z

0

{∫ 1−z−x

0

exp(x + y + z) dy

}
dx

}
dz

=
∫ 1

0

{∫ 1−z

0

[exp(x + y + z)]1−z−x
y=0 dx

}
dz =

∫ 1

0

{∫ 1−z

0

(
e − ex+z

)
dx

}
dz

= e

∫ 1

0

{∫ 1−z

0

dx

}
dz −

∫ 1

0

{∫ 1−z

0

ex+z dx

}
dz

= e

∫ 1

0

(1 − z) dz −
∫ 1

0

[
ex+z

]
x=0

1 − zdz =
1
2

e −
∫ 1

0

(e − ez) dz

=
1
2

e − e + [ez]10 =
e

2
− 1 =

1
2

(e − 2).

4) From f(x, y, z) = (1 + x + y + z)−3 = (1 + t)−3 = g(t) and (1) follows that∫
A

(1 + x + y + z)−3 dΩ =
1
2

∫ 1

0

t2

(1 + t)3
dt =

1
2

∫ 1

0

{
1

(t + 1)3
− 2

(t + 1)2
+

1
t + 1

}
dt

=
1
2

[
−1

2
· 1
(t + 1)2

+
2

t + 1
+ ln(t + 1)

]1
0

=
1
2

{
−1

2
· 1
4

+
2
2

+ ln 2 +
1
2
− 2
}

=
1
2

{
ln 2 − 5

8

}
=

1
2

ln 2 − 5
16

.
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Alternatively, by traditional calculations,∫
A

(1 + x + y + z)−3 dΩ =
∫ 1

0

{∫ 1−z

0

{∫ 1−z−x

0

(1 + x + y + z)−3 dy

}
dx

}
dz

=
∫ 1

0

{∫ 1−z

0

[
−1

2
(1 + x + y + z)−2

]1−z−x

y=0

dx

}
dz

=
1
2

∫ 1

0

{∫ 1−z

0

{
(1 + x + z)−2 − 1

4

}
dx

}
dz

=
1
2

∫ 1

0

[−(1 + x + z)−1
]1−z

x=0
dz − 1

8

∫ 1

0

{∫ 1−z

0

dx

}
dz

=
1
2

∫ 1

0

{
1

1 + z
− 1

2

}
dz − 1

16
=

1
2

ln 2 − 1
4
− 1

16
=

1
2

ln 2 − 5
16

.

5) In this case we can no longer apply (1). We note by symmetry that∫
B′(z)

x2 dx dy =
∫

B′(z)

y2 dx dy,

hence by traditional calculations,∫
A

(x2 + y2 + z2) dΩ =
∫ 1

0

z2 areal(B′(z)) dz + 2
∫ 1

0

{∫
B′(z)

x2 dx dy

}
dz

=
1
2

∫ 1

0

z2(1 − z)2 dz + 2
∫ 1

0

{∫ 1−z

0

x2

{∫ 1−z−x

0

dy

}
dx

}
dz

=
1
2

∫ 1

0

(z2 − 2z3 + z4) dz + 2
∫ 1

0

{∫ 1−z

0

x2(1 − z − x) dx

}
dz

=
1
2

[
1
3

z31 − 2
4

z4+
1
5

z5

]1
0

+2
∫ 1

0

[
1
3

x3(1 − z)− 1
4

x4

]1−z

x=0

dz

=
1
2

(
1
3
− 1

2
+

1
5

)
+ 2 · 1

12

∫ 1

0

(1 − z)4 dz

=
1
60

(10 − 15 + 6) +
1
6

[
−1

5
(1 − z)5

]1
0

=
1
60

+
1
30

=
1
20

.

6) Put

B′′(y) = {(x, z) | 0 ≤ x, 0 ≤ z, x + z ≤ 1 − y}.

It follows fore symmetric reasons that∫
B′′(y)

xy dx dz =
∫

B′′(y)

yz dx dz.

Hence∫
A

(xy−yz) dΩ =
∫ 1

0

{∫
B′′(y)

(xy−yz) dx dz

}
dy = 0.
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Alternatively we get by traditional calculations,∫
A

(xy−yz) dΩ =
∫ 1

0

{∫
B′(z)

(x − z)y dx dy

}
dz

=
∫ 1

0

{∫ 1−z

0

(x − z)

{∫ 1−(x+z)

0

y dy

}
dx

}
dz =

1
2

∫ 1

0

{∫ 1−z

0

(x−z)[1−(x+z)]2dx

}
dz

=
1
2

∫ 1

0

{∫ 1−z

0

(x+z)[(x+z)−1]2dx

}
dz −

∫ 1

0

z

{∫ 1−z

0

[(x+z)−1]2 dx

}
dz.

In order to avoid too complicated expressions we compute the two double integrals one by one:

1
2

∫ 1

0

{∫ 1−z

0

(x+z)[(x+z)−1]2dx

}
dz =

1
2

∫ 1

0

{∫ 1−z

0

{(x+z)3−2(x+z)2+(x+z)}dx

}
dz

=
1
2

∫ 1

0

[
1
4
(x+z)4− 2

3
(x+z)3+

1
2
(x+z)2

]1−z

x=0

dz =
1
2

∫ 1

0

{
1
4
− 2

3
+

1
2
− 1

4
z4+

2
3

z3− 1
2

z2

}
dz

=
1
24

+
1
2

[
− 1

20
+

1
6
− 1

6

]
=

1
24

− 1
40

=
5 − 3
120

=
1
60

,
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Figure 12: The tetrahedron A with its projection B onto the (x, y)-plane.

and∫ 1

0

z

{∫ 1−z

0

[(x + z) − 1]2 dx

}
dz =

∫ 1

0

z

[
1
3
(x + z − 1)3

]1−z

x=0

dz

=
1
3

∫ 1

0

z(1 − z)3 dz =
1
3

∫ 1

0

(1 − t)t3 dt =
1
3

[
1
4

t4 − 1
5

t5
]1
0

=
1
60

.

Finally, we get by insertion,∫
A

(xy − yz) dΩ =
1
60

− 1
60

= 0.

Example 1.4 Let B be the triangle which is bounded by the X-axis and the Y -axis and the line of

the equation x + y =
1
2
. Furthermore, let A be the tetrahedron bounded by the three coordinate planes

and the plane of the equation 2x + 2y + z = 1. Compute the integrals∫
B

(1 − 2x − 2y) dx dy and
∫

A

(x + y + z) dx dy dz.

A Plane integral and space integral.

D Sketch B and A. Then compute the integrals.

I It follows immediately that B is that surfaces of A, which lies in the i (x, y)-plane.
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First calculate the plane integral (it is actually the volume of the tetrahedron A),

∫
B

(1 − 2x − 2y)dx dy =
∫ 1

2

0

{∫ 1
2−x

0

(1 − 2x − 2y) dy

}
dx

=
∫ 1

2

0

{
(1 − 2x)

(
1
2
− x

)
−
(

1
2
− x

)2
}

dx =
∫ 1

2

0

(
1
2
− x

)2

dx

=

[
1
3

(
x − 1

2

)3
] 1

2

0

= 0 − 1
3

(
−1

2

)3

=
1
24

.

Then compute the space integral,

∫
A

(x + y + z) dx dy dz =
∫

B

{∫ 1−2x−2y

0

(x + y + z) dz

}
dx dy

=
∫

B

{
(x + y)(1 − 2x − 2y) +

1
2

(1 − 2x − 2y)2
}

dx dy

=
1
2

∫
B

(1 − 2x − 2y){2x + 2y + (1 − 2x − 2y)} dx dy

=
1
2

∫
B

(1 − 2x − 2y) dx dy =
1
2
· 1
24

=
1
48

,

where we have inserted the value of the plane integral.

Example 1.5 Consider two balls and their intersection

Ω1 = K((0, 0, 0); a), Ω2 = K
(
(0, 0, a);

a

2

)
, Ω = Ω1 ∩ Ω2.

1) Sketch the three point sets by means of a meridian half plane, and describe the position of the
intersection circle ∂Ω1 ∩ ∂Ω2.

2) Find the volume of Ω.

3) Compute the space integral∫
Ω

(2 − xy) dΩ.

A Space integrals.

D Follow the given guidelines.

I 1) The two circles cut each other at height z ∈
]a
2
, a
[
. Then by Pythagoras’s theorem,

r2 = a2 − z2 =
(a

2

)2

− (a − z)2 = −3
4

a2 + 2az − z2.

A reduction gives 2az =
7
4

a2, thus z =
7
8

a, which indicates the whereabouts of the plane, in
which the intersection circle ∂Ω1 ∩ ∂Ω2 lies.
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Figure 13: The situation in the meridian half plane for a = 1.

2) Then split Ω = ω1 ∪ ω2 into its two natural subregions, where ω1 lies above the plane z =
7
8

a,
and ω2 lies below the same plane. We use in each of the subregions ω1 and ω2 the “method
of slices”, where each slice is parallel to the (x, y)-plane. By translating the subregion ω2 in a
convenient way we finally get

vol(Ω) = vol(ω1) + vol(ω2) =
∫ a

7
8 a

π
(
a2 − z2

)
dz +

∫ − 1
8 a

− 1
2 a

π

(
a2

4
− z2

)
dz

= π

[
a2z − 1

3
z3

]a

7
8 a

+ π

[
a2

4
z − 1

3
z3

] 1
2 a

1
8 a

= πa3

{(
1− 1

3
− 7

8
+

1
3
·
(

7
8

)3
)

+

(
1
4
· 1
2
− 1

3
· 1
8
− 1

4
· 1
8

+
1
3
·
(

1
8

)3
)}

=
πa3

8

{
1− 8

3
+

7
3
·
(

7
8

)2

+1− 1
3
− 1

4
+

1
3
· 1
82

}

=
πa3

24

{
−3− 3

4
+

1
64

(343+1)
}

=
πa3

24

{
−15

4
+

43
8

}
=

13
192

πa3.

3) Of symmetric reasons,
∫
Ω

xy dΩ = 0, thus∫
Ω

(2 − xy) dΩ = 2 · vol(Ω) =
13
96

πa3.
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Example 1.6 Given the tetrahedron

T = {(x, y, z) ∈ R
3 | 0 ≤ x, 0 ≤ y. 0 ≤ z, z + 2x + 4y ≤ 8}.

Compute the space integral∫
T

x dΩ.

A Space integral.

D First find the base of T in the (x, y)-plane.

 Space integral, rectangular coordinates
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Figure 14: The base B of T in the plane z = 0.

I The base B is given by

0 ≤ x, 0 ≤ y, 2x + 4y ≤ 8,

i.e.

B = {(x, y) | 0 ≤ x, 0 ≤ y, x + 2y ≤ 4}.

Then we get the space integral

∫
T

x dΩ =
∫ 4

0

{∫ 1
2 (4−x)

0

x · (8 − 2x − 4y) dy

}
dx

= −1
8

∫ 4

0

x
[
(8 − 2x − 4y)2

] 1
2 (4−x)

y=0
dx =

1
8

∫ 4

0

x(8 − 2x)2 dx

=
4
8

∫ 4

0

{(x − 4) + 4}(x − 4)2 dx =
1
2

[
1
4

(x − 4)4 +
4
3

(x − 4)3
]4
0

=
1
2

{
−1

4
· 44 +

4
3
· 43

}
=

43

2

(
4
3
− 1
)

=
32
3

.

Alternatively, start by integrating with respect to x. Then

∫
T

x dΩ =
∫ 2

0

{∫ 4−2y

0

(8x − 2x2 − 4xy) dx

}
dy =

∫ 2

0

[
4x2 − 2

3
s3 − 2x2y

]4−2y

x=0

dy

=
∫ 2

0

{
(4 − 2y) · (4 − 2y)2 − 2

3
(4 − 2y)3

}
dy =

1
3

∫ 2

0

(4 − 2y)3 dy =
8
3

∫ 2

0

(2 − y)3 dy

=
8
3

∫ 2

0

t3 dt =
8
3

[
t4

4

]2
0

=
32
3

.

 Space integral, rectangular coordinates
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Example 1.7 Given a curve K in the (z, x)-plane of the equation

x = cos z, z ∈
[
−π

2
,
π

2

]
.

The curve K is rotated once around the z-axis in the (x, y, z)-space, creating the surface of revolution
F . Let A denote the bounded domain in the (x, y, z)-space with F as its boundary surface.

1) Find the volume of A.

2) Compute the space integral∫
A

√
x2 + y2 dΩ.

A Body of revolution an space integral.

D Sketch a figure and then just compute.
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–0.5

0.5

1

Figure 15: The domain A with the boundary surface F .

I 1) The domain A is the spindle shaped body on the figure.

We get by slicing the body,

vol(A) =
∫ π

2

−π
2

π cos2 z dz = 2π

∫ π
2

0

1 + cos 2z

2
dz = 2π · 1

2
· π

2
=

π2

2
.

2) If we put

Bz = {(x, y) |
√

x2 + y2 ≤ cos z}, z ∈
[
−π

2
,
π

2

]
,

then∫
A

√
x2 + y2 dΩ =

∫ π
2

−π
2

{∫
Bz

√
x2 + y2 dx dy

}
dz = 2

∫ π
2

0

{
2π

∫ cos z

0

� · � d�

}
dz

= 4π

∫ π
2

0

[
�3

3

]cos z

0

dz =
4π

3

∫ π
2

0

cos3 z dz

=
4π

3

∫ π
2

0

(1 − sin2 z) cos z dz =
4π

3

[
sin z − 1

3
sin3 z

]π
2

0

=
8π

9
.

 Space integral, rectangular coordinates
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Example 1.8 Let a be a positive constant, and let

A = {(x, y, z) ∈ R
3 | (x, y) ∈ B,

√
ax ≤ z ≤

√
ax + y2},

where

B = {(x, y) ∈ R
2 | 0 ≤ x ≤ a, −x ≤ y ≤ 2x}.

Compute the space integral∫
A

xyz dΩ.

A Space integral.

D Reduce the integral by first integrating with respect to z.
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Figure 16: The domain B for a = 1.

I When we reduce as a triple integral, we get

∫
A

xyz dΩ =
∫ a

0

{∫ 2x

−x

(∫ √
ax+y2

√
ax

xyz dz

)
dy

}
dx =

∫ a

0

x

⎧⎨
⎩
∫ 2x

−x

y

[
1
2

z2

]√ax+y2

√
ax

dy

⎫⎬
⎭ dx

=
1
2

∫ a

0

x

{∫ 2x

−x

y3 dy

}
dx =

1
2

∫ a

0

x

[
1
4

y4

]2x

−x

dx =
1
8

∫ a

0

x
{
24 − 1

}
x4 dx

=
15
8

∫ a

0

x5 dx =
15
8

· a6

6
=

5
16

a6.
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Example 1.9 Let c be a positive constant. Consider the half ball A given by the inequalities

x2 + y2 + z2 ≤ c2, z ≥ 0.

1) Compute the space integral

J =
∫

A

z dΩ.

2) Show that both the space integrals
∫

A
x dΩ and

∫
A

y dΩ are zero.

A Space integrals.

D Apply the slicing method and convenient symmetric arguments.

Alternatively, reduce in

1) spherical coordinates,

2) semi-polar coordinates,

3) rectangular coordinates.

 Space integral, rectangular coordinates
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Figure 17: The half ball A for c = 1.

I 1) First variant. The slicing method.
At the height z the body A is cut into a disc B(z) of radius

√
c2 − z2, hence of area (c2−z2)π.

Then we get by the slicing method,

J =
∫

A

z dΩ =
∫ c

0

z area(B(z)) dz = π

∫ c

0

{c2z − z3} dz = π

[
c2 · z2

2
− z4

4

]c

0

=
π

4
c4.

Second variant. Spherical coordinates.
The set A is in spherical coordinates described by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x = r sin θ cos ϕ,

y = r sin θ sinϕ,

z = r cos θ,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕ ∈ [0, 2π],

θ ∈
[
0,

π

2

]
,

r ∈ [0, c],

and dΩ = r2 sin θ dr dθ dϕ. Thus we get by reduction

J =
∫

A

z dΩ =
∫ 2π

0

{∫ π
2

0

(∫ c

0

r cos θ · r2 sin θ dr

)
dθ

}
dϕ

= 2π ·
[
1
2

sin2 θ

]π
2

0

·
[
r4

4

]c

0

= 2π · 1
2
· 1
4

c4 =
π

4
c4.

Third variant. Semi-polar coordinates.
In semi-polar coordinates A is described by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x = � cos ϕ,

y = � sin ϕ,

z = z,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ ∈ [0, 2π],

z ∈ [0, c],

� ∈ [0,
√

c2 − z2
]
,

 Space integral, rectangular coordinates
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and dΩ = � d� dϕdz. We therefore get by reduction

J =
∫

A

z dΩ =
∫ 2π

0

{∫ c

0

(∫ √
c2−z2

0

z · � d�

)
dz

}
dϕ

= 2π

∫ c

0

z

[
1
2

�2

]√c2−z2

0

dz = π

∫ c

0

(
c2z − z3

)
dz =

π

4
c4.

Fourth variant. Rectangular coordinates.
Here A is described by

0 ≤ z ≤ c, |x| ≤
√

c2 − z2, |y| ≤
√

c2 − z2 − x2,

hence

J =
∫

A

z dΩ =
∫ c

0

z

{∫ √
c2−z2

−√
c2−z2

(∫ √
c2−z2−x2

−√
c2−z2−x2

dy

)
dx

}
dz

= 2
∫ c

0

z

{∫ √
c2−z2

−√
c2−x2

√
c2 − z2 − x2 dx

}
dz.

We then get by the substitution x =
√

c2 − z2 · t,

J = 4
∫ c

0

z

{∫ √
c2−z2

0

√
(c2 − z2) − x2 dx

}
dz

= 4
∫ c

0

z

{∫ 1

0

(√
c2 − z2

)2

·
√

1 − t2 dt

}
dz

= 4
∫ c

0

z(c2 − z2) dz ·
∫ 1

0

√
1 − t2 dt = c4 · π

4
,

where there are lots of similar variants.

2) First variant. A symmetric argument.
The set A is symmetric with respect to the planes y = 0 and x = 0, and the integrand x,
resp. y, is an odd function. Hence,∫

A

x dΩ = 0 and
∫

A

y dΩ = 0.

Second variant. Spherical coordinates.
By insertion,∫

A

x dΩ =
∫ 2π

0

{∫ π
2

0

(∫ c

0

r sin θ cos ϕ · r2 sin θ dr

)
dθ

}
dϕ

=
∫ 2π

0

cos ϕdϕ ·
∫ π

2

0

sin2 θ dθ ·
∫ c

0

r3 dr = [sinϕ]2π
0 · π

4
· c4

4
= 0,

and similarly.
Third and fourth variant. These are similar to the previous semi-polar and rectangular

cases.

 Space integral, rectangular coordinates
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2 Space integrals, semi-polar coordinates

Example 2.1 Compute in each of the following cases the given space integral over a point set A,
which in semi-polar coordinates is bounded by

α ≤ ϕ ≤ β and (�, z) ∈ B(ϕ).

One shall first from the given description of the domain of integration find α, β and B(ϕ).

1) The space integral
∫

A

√
x2 + y2 dΩ, where the domain of integration A is given by

√
x2 + y2 ≤ z ≤ 1.

2) The space integral
∫

A
ln(1 + x2 + y2) dΩ, where the domain of integration A is given by

1
2

(x2 + x2) ≤ z ≤ 2.

3) The space integral
∫

A
(x + y2)z dΩ, where the domain of integration A is given by

x2 + y2 ≤ 1 and x2 + y2 ≤ z ≤
√

2 − x2 − y2.

4) The space integral
∫

A
(x2 + y2) dΩ, where the domain of integration A is given by

x2 + y2

a
≤ z ≤ h.

5) The space integral
∫

A
xy dΩ, where the domain of integration A is given by the conditions

x ≥ 0, y ≥ 0 and
x2 + y2

a
≤ z ≤ h.

6) The space integral
∫

A
xz dΩ, where the domain of integration A is given by

x2 + y2 ≤ 2x and 0 ≤ z ≤
√

x2 + y2.

7) The space integral
∫

A
(z2 + y2) dω, where the domain of integration A is given by

0 ≤ z ≤ h − h

a

√
x2 + y2.

8) The space integral
∫

A
(x2 + y2) dΩ, where the domain of integration A is given by

x2 + y2 ≤ 3 and 0 ≤ z ≤
√

1 + x2 + y2.

9) The space integral
∫

A
xy dΩ, where the domain of integration A is given by

x2 + y2 ≤ 3 and 0 ≤ z ≤
√

1 + x2 + y2.

 Space integrals, semi-polar coordinates
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10) The space integral
∫

A
(x2z + z3) dΩ, where the domain of integration A is given by

0 ≤ z ≤
√

a2 − x2 − y2.

11) The space integral
∫

A
|y|z dΩ, where the domain of integration A is given by

x2 + y2 ≤ ax and 0 ≤ z ≤ x2

a
.

12) The space integral
∫

A
xz dΩ, where the domain of integration is one half cone of revolution of

vertex (0, 0, h) and its base in the plane z = 0 given by

x2 + y2 ≤ a2 for x ≥ 0.

13) The space integral
∫

A
z dΩ, where the domain of integration A is given by x2 + y2 ≤ (2 − z)2 for

z ∈ [0, 2].

[This is also Example 1.2.8, so we may compare the results. Cf. also Example 1.1.8.]

A Space integrals in semi-polar coordinates.

D Find the interval [α, β] for ϕ. Describe B(ϕ) in semi-polar coordinates and sketch if necessary B(ϕ)
in the meridian half plane. Finally, compute the space integral by using the theorem of reduction
in semi-polar coordinates.

 Space integrals, semi-polar coordinates
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Figure 18: The meridian cut B(ϕ) in Example 2.1.1.

I 1) Here ϕ ∈ [0, 2π] and

B(ϕ) = {(�, z) | 0 ≤ � ≤ 1, � ≤ z ≤ 1} = {(�, z) | 0 ≤ z ≤ 1, 0 ≤ � ≤ z}.

Then by the reduction theorem,∫
A

√
x2 + y2 dΩ =

∫ 2π

0

{∫
B(ϕ)

� · � d� dz

}
dϕ

= 2π

∫ 1

0

{∫ z

0

�2 d�

}
dz =

2π

3

∫ 1

0

z3 dz =
π

6
.

2) Here ϕ ∈ [0, 2π], and

B(ϕ) =
{

(�, z)
∣∣∣∣ 0 ≤ � ≤ 2,

1
2

�2 ≤ z ≤ 2
}

= {(�, z) | 0 ≤ z ≤ 2, 0 ≤
√

2z}

which does not depend on ϕ. Then by the reduction theorem,∫
A

ln(1 + x2 + y2) dΩ =
∫ 2π

0

{∫
B(ϕ)

ln(1 + �2) · � d� dz

}
dϕ

= 2π

∫ 2

0

{∫ √
2z

0

ln(1 + �2) � d�

}
dz = 2π

∫ 2

0

[
1
2
{
(1 + �2) ln(1 + �2) − �2

}]√2z

�=0

dz

= π

∫ 2

0

{(1 + 2z) ln(1 + 2z) − 2z}dz =
π

2

∫ 4

0

(1 + t) ln(1 + t) dt − π
[
z2
]2
z=0

=
π

2

[
1
2
(1 + t)2 ln(1 + t) − 1

4
(1 + t)2

]4
0

− 4π =
π

2

{
25
2

ln 5 − 25
4

+
1
4

}
− 4π

= π

{
25
4

ln 5 − 7
}

.

3) Here ϕ ∈ [0, 2π], and B(ϕ) does not depend on ϕ,

B = B(ϕ) = {(�, z) | 0 ≤ � ≤ 1, �2 ≤ z ≤
√

2 − �2}.

 Space integrals, semi-polar coordinates
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Figure 19: The meridian cut B = B(ϕ) of Example 2.1.2.
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Figure 20: The meridian cut B(ϕ) of Example 2.1.3.

It follows by the symmetry that∫
A

(x + y2)z dΩ =
∫

A

xz dΩ +
∫

A

y2z dΩ = 0 +
∫

A

y2z dΩ

=
∫ 2π

0

{∫
B(ϕ)

�2 sin2 ϕ · z · � d� dz

}
dz =

{∫ 2π

0

sin2 ϕ dϕ

}
·
{∫

B

z�2 d� dz

}

= π

∫ 1

0

�3

{∫ √
2−�2

�2
z dz

}
d� =

π

2

∫ 1

0

�3
[
z3
]√2−�2

z=�2 d� =
π

2

∫ 1

0

�3
(
2 − �2 − �4

)
d�

=
π

2

∫ 1

0

{
2�3 − �5 − �7

}
d� =

π

2

(
1
2
− 1

6
− 1

8

)
=

5π

48
.

4) Here ϕ ∈ [0, 2π], and B(ϕ) does not depend on ϕ,

B = B(ϕ) =
{

(�, z)
∣∣∣∣ �2

a
≤ z ≤ h

}
= {(�, z) | 0 ≤ z ≤ h, 0 ≤ � ≤ √

az}.
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Figure 21: The meridian cut B(ϕ) for a = 2 and h = 1 in Example 2.1.4 and Example 2.1.5.

Then by the reduction theorem,∫
A

(x2 + y2) dΩ =
∫ 2π

0

{∫
B

�2 · � d� dz

}
dϕ = 2π

∫ h

0

{∫ √
az

0

�3 d�

}
dz

=
2π

4

∫ h

0

a2z2 dz =
πa2h3

6
.

5) Here ϕ ∈
[
0,

π

2

]
. Note that B = B(ϕ) is the same set as in 4),

B = B(ϕ) = {(�, z) | 0 ≤ z ≤ h, 0 ≤ � ≤ √
az}.

Then by the reduction theorem,∫
A

xy dΩ =
∫ π

2

0

{∫
B

�2 cos ϕ · sin ϕ · � d� d <

}
dϕ

=
∫ π

2

0

cos ϕ · sin ϕ dϕ ·
∫ h

0

{∫ √
az

0

�3 d�

}
dz =

[
sin2 ϕ

2

]π
2

0

· 1
4

∫ h

0

a2z2 dz =
a2h3

24
.

6) It follows from x2 + y2 ≤ 2x that

� ≤ 2 cos ϕ, ϕ ∈
[
−π

2
, ϕπ2

]
,

corresponding to the disc (x − 1)2 + y2 ≤ 1 in the XY -plane. Furthermore,

B(ϕ) = {(�, z) | 0 ≤ � ≤ 2 cos ϕ, 0 ≤ z ≤ �},

which depends on ϕ. The domain of integration A is obtained by removing the open cone
z >

√
x2 + y2 from the half infinite (x − 1)2 + y2 ≤ 1.
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We get by using the reduction theorem,∫
A

xz dΩ =
∫ π

2

−π
2

{∫
B(ϕ)

� cos ϕ · z · � d� dz

}
dϕ =

∫ π
2

−
π

2

cos ϕ

{∫ 2 cos ϕ

0

�2

[∫ �

0

z dz

]
d�

}
dϕ

=
1
2

∫ π
2

−π
2

{∫ 2 cos ϕ

0

�4 d�

}
dϕ =

1
2 · 5

∫
−π

2

π

2
cos ϕ

[
�5
]2 cos ϕ

�=0
dϕ

=
1
5

∫ π
2

0

32 · cos6 ϕdϕ =
4
5

∫ π
2

0

(cos 2ϕ + 1)3 dϕ =
2
5

∫ π

0

(cos t + 1)3 dt

=
2
5

∫ π

0

{cos3 t + 3 cos2 t + 3 cos t + 1}dt

=
2
5

∫ π

0

{(1 − sin2 t) cos t +
3
2
(cos 2t + 1) + 3 cos t + 1}dt

=
2
5

[
−1

3
sin3 t + 4 sin t +

3
4

sin 2t +
5
2

t

]π

0

= π.
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Figure 22: The meridian cut B = B(ϕ) for a = 2 and h = 1 in Example 2.1.7.

7) Here ϕ ∈ [0, 2π], and � ∈ [0, a], and B = B(ϕ) does not depend on ϕ,

B = B(ϕ) =
{

(�, z)
∣∣∣∣ 0 ≤ � ≤ a, 0 ≤ z ≤ h − h

a
�

}
.

We get by the reduction theorem,∫
A

(z2 + y2) dΩ =
∫ 2π

0

{∫
B

z2 · � d� dz

}
dϕ +

∫ 2π

0

{∫
B

�2 sin2 ϕ · � d� dz

}
dϕ

= 2π

∫ a

0

�

{∫ h(1− �
a )

0

z2 dz

}
d� +

∫ 2π

0

sin2 ϕ dϕ ·
∫ a

0

�3

{∫ h(1− �
a )

0

dz

}
d�

=
2π

3

∫ a

0

� · h3
(
1− �

a

)3

d�+π

∫ a

0

�3 · h
(
1− �

a

)
d�

=
2πh3

3
· a2

∫ a

0

{
1−
(
1− �

a

)}(
1− �

a

)3 1
a

d� + πha4

∫ a

0

(�

a

)3

·
(
1 − �

a

) 1
a

d�

=
2πh3

3
· a2

∫ 1

0

(1−t)t3 dt+πha4

∫ 1

0

t3(1−t) dt = πha2

(
2
3

h2 + a2

)∫ 1

0

(t3−t4) dt

=
πha2

20

(
2
3

h2 + a2

)
.

8) Here ϕ ∈ [0, 2π] and 0 ≤ � ≤ √
3, and

B = B(ϕ) = {(�, z) | 0 ≤ � ≤
√

3, 0 ≤ z ≤
√

1 + �2},

which is independent of ϕ.
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Figure 23: The meridian cut B = B(ϕ) in Example 2.1.8 and Example 2.1.9.

By the reduction theorem,∫
A

(x2 + y2) dΩ =
∫ 2π

0

{∫
B

�2 · � d� dz

}
dϕ = 2π

∫ √
3

0

�3

{∫ √
1+�2

0

dz

}
d�

= 2π

∫ √
3

0

�2
√

1 + �2 d� = π

∫ 3

0

t
√

1 + tdt = π

∫ 3

0

{
(1 + t)

3
2 − (1 + t)

1
2

}
dt

= π

[
2
5

(1 + t)
2
5 − 2

3
(1 + t)

3
2

]3
0

= 2π

(
1
5

{
4

5
2 − 1

}
− 1

3

{
4

3
2 − 1

})

= 2π

(
31
5

− 7
3

)
=

116π

15
.

9) The domain of integration is the same as in Example 2.1.8, so ϕ ∈ [0, 2π], and

B = B(ϕ) = {(�, z) | 0 ≤ � ≤
√

3, 0 ≤ z ≤
√

1 + �2}.
Now A is symmetric with respect to e.g. the plane y = 0, so∫

A

xy dΩ = 0.

Alternatively we have the following calculation∫
A

xy dΩ =
∫ 2π

0

{∫
B

�2 sinϕ · cos ϕ · � d� dz

}
dϕ =

∫ 2π

0

sinϕ · cos ϕ dϕ ·
∫

B

�3 d� dz = 0,

where we have used that B does not depend on ϕ and also that

∫ 2π

0

sin ϕ · cos ϕ dϕ =
[
sin2 ϕ

2

]2π

0

= 0.

10) Here A is the half ball in the half space z ≥ 0 of centrum (0, 0, 0) and radius a, thus ϕ ∈ [0, 2π],
and B(ϕ) does not depend on ϕ,

B = B(ϕ) = {(�, z) | 0 ≤ � ≤ a, 0 ≤ z ≤
√

a2 − �2}.

 Space integrals, semi-polar coordinates



Download free books at BookBooN.com

Calculus 2c-6

 

42  

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

0.2 0.4 0.6 0.8 1 1.2

x

Figure 24: The meridian cut B = B(ϕ) in Example 2.1.10.

By the reduction theorem,∫
A

(x2z + z3) dΩ =
∫ 2π

0

{∫
B

(�2 cos2 ϕ · z+z3)� d� dz

}
dϕ

=
∫ 2π

0

cos2 ϕ dϕ ·
∫ a

0

�3

{∫ √
a2−�2

0

z dz

}
d� + 2π

∫ a

0

�

{∫ √
a2−�2

0

z3 dz

}
d�

= π · 12
∫ a

0

(a2�3 − �5) d� +
2π

4

∫ a

0

�(a2 − �2)2 d�

=
π

2

[
a2

4
�4 − 1

6
�6

]a

0

+
π

2
· 1
2

∫ a2

0

(a2 − t)2 dt

=
π

2

(
a6

4
− a6

6

)
+

π

12
[−(a2 − t)3

]a2

0
=

πa6

24
+

πa6

12
=

πa6

8
.

11) Here x2 + y2 ≤ ax, hence � ≤ a cos ϕ, and 0 ≤ z ≤ 1
a

�2 cos2 ϕ, and ϕ ∈
[
−π

2
,
π

2

]
, so

B(ϕ) =
{

(�, z)
∣∣∣∣ 0 ≤ � ≤ a cos ϕ, 0 ≤ z ≤ 1

a
�2 cos2 ϕ

}
.

Clearly, B(ϕ) depends on ϕ, so we can only conclude that any meridian curve for fixed ϕ is a
parabola in the PZ-plane, and there is no need to sketch it.
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The set A is symmetric with respect to the plane y = 0, so by the reduction theorem,∫
A

|y|z dΩ =
∫ π

2

−π
2

{∫
B(ϕ)

�| sin ϕ| · z · � d� dz

}
dϕ = 2

∫ π
2

0

{∫
B(ϕ)

� sin ϕ · z · � d� dz

}
dϕ

= 2
∫ π

2

0

{∫ a cos ϕ

0

�2 sin ϕ

{∫ 1
a �2 cos2 ϕ

0

z dz

}
d�

}
dϕ

= 2
∫ π

2

0

sinϕ

{∫ a cos ϕ

0

�2

[
z2

2

] 1
a �2 cos2 ϕ

z=0

d�

}
dϕ

=
∫ π

2

0

sinϕ

{∫ a cos ϕ

0

1
a2

�6 cos4 ϕ d�

}
dϕ =

1
a2

∫ π
2

0

sin ϕ · cos4 ϕ

{∫ a cos ϕ

0

�6 d�

}
dϕ

=
1

7a2

∫ π
2

0

sin ϕ · cos4 ϕ · a7 cos7 ϕ dϕ =
a5

7

[
−cos12 ϕ

12

]π
2

0

=
a5

84
.

12) Here ϕ ∈
[
−π

2
,
π

2

]
, and we have for any fixes ϕ that

B(ϕ) =
{

(�, z)
∣∣∣ 0 ≤ x ≤ h, 0 ≤ � ≤ a

(
1 − z

h

)}
.
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The meridian cut does not depend on ϕ ∈
[
−π

2
,
π

2

]
. Notice that it is identical with the meridian

cut in Example 2.1.7.

We get by the reduction theorem in semi-polar coordinates,∫
A

xz dΩ =
∫ π

2

−π
2

{∫
B(ϕ)

� cos ϕ · z · � d� dz

}
d�

=
∫ ϕ

2

−π
2

cos ϕ

{∫ h

0

z

(∫ a(1− z
h )

0

�2 d�

)
dz

}
dϕ = [sinϕ]

π
2
−π

2

∫ h

0

z

[
1
3

�3

]a(1− z
h )

0

dz

= 2 · a3

3

∫ h

0

z
(
1 − z

h

)3

dz =
2
3

a3

∫ h

0

z

(
1− 3

h
z+

3
h2

z2− 1
h3

z3

)
dz

=
2
3

a3

∫ h

0

(
z− 3

h
z2+

3
h2

z3− 1
h3

z4

)
dz =

2
3

a3

[
1
2

z2− 1
h

z3+
3

4h2
z4− 1

5h2
z5

]h

0

=
2
3

a3h2

(
1
2
− 1 +

3
4
− 1

5

)
=

2
3

(
1
4
− 1

5

)
a3h2 =

1
30

a3h2.

13) In this case we integrate over the same set as in Example 1.1.8. Then by the reduction
theorem in semi-polar coordinates followed by the change of variables u = 2 − z,∫

A

z dΩ =
∫ 2

0

z · π(2 − z)2 dz = π

∫ 2

0

(2 − u)u2 du = π

∫ 2

0

(2u2 − u3) du

= π

[
2
3

u3 − 1
4

u4

]2
0

= π

[
16
3

− 16
4

]
=

16
12

π =
4π

3
.
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3 Space integrals, spherical coordinates

Example 3.1 Calculate in each of the following cases the given space integral over a point set A,
which in spherical coordinates is bounded by

α ≤ ϕ ≤ β and (r, θ) ∈ B∗(ϕ);

1) The space integral
∫

A

√
x2 + y2 dΩ, where the domain of integration A is given by

x2 + y2 + z2 ≤ 2.

2) The space integral
∫

A
(x2 + y2 + z2)2 dΩ, where the domain of integration A is given by

x2 + y2 + z2 ≤ 1.

3) The space integral
∫

A
xyz dΩ, where the domain of integration A is given by

x2 + y2 + z2 ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0.

4) The space integral
∫

A
(x2 + y2 + z2)−

3
2 dΩ, where the domain of integration A is given by

a2 ≤ x2 + y2 + z2 ≤ b2, where b > a.

5) The space integral
∫

A
(x2z + z3) dΩ, where the domain of integration A is given by

x2 + y2 + z2 ≤ a2 and z ≥ 0.

6) The space integral
∫

A

y

z2
dΩ, where the domain of integration A is given by

x2 + y2 + z2 ≤ (2a)2, a ≤ z, 0 ≤ y ≤ x.

A Space integrals in spherical coordinates.

D Identify the point set. Sketch if necessary the meridian cut. Finally, compute the space integral
by reduction in spherical coordinates.

I 1) It is obvious that A is a conic slice of the ball of centrum (0, 0, 0) and radius
√

2. Thus 0 ≤ ϕ ≤ 2π,
and the meridian cut

B∗ = B∗(ϕ) =
{

(r, θ)
∣∣∣ 0 ≤ r ≤

√
2, 0 ≤ θ ≤ π

4

}
does not depend on ϕ Then by the reduction theorem in spherical coordinates,∫

A

√
x2 + y2 dΩ =

∫ 2π

0

{∫
N∗(ϕ)

r sin θ · r2 sin θ dr dθ

}
dϕ = 2π

∫ √
2

0

r3 dr ·
∫ π

4

0

sin2 θ dθ

= 2π

[
r4

4

]√2

0

∫ π
4

0

1 − cos 2θ

2
dθ = 2π · 4

4
· 1
2

[
θ − 1

2
sin 2θ

]π
4

0

= π

(
π

4
− 1

2

)
=

π2

4
− π

2
.
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Figure 25: The meridian cut B∗ in Example 3.1.1.
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Figure 26: The meridian cut B∗ in Example 3.1.2.

2) The set A is the unit ball, so ϕ ∈ [0, 2π], and B∗ = B∗(ϕ) is the unit half circle in the right
half plane which does not depend on ϕ,

B∗ = B∗(ϕ) = {(r, θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ π}.

Then by the reduction theorem in spherical coordinates,∫
A

(x2 + y2 + z2)2 dΩ = 2π

∫
B∗

r4 · r2 sin θ dr dθ = 2π

∫ 1

0

r6 ·
∫ π

0

sin θ dθ =
4π

7
.

3) The domain of integration is that part of the unit ball which lies in the first octant, thus
0 ≤ ϕ ≤ π

2
and

B∗(ϕ) =
{

(r, θ)
∣∣∣ 0 ≤ θ ≤ π

2

}
for 0 ≤ ϕ ≤ π

2
.
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Figure 27: The meridian cut B∗(ϕ), ϕ ∈
[
0,

π

2

]
in Example 3.1.3.

By the reduction theorem in spherical coordinates,∫
A

xyz dΩ =
∫ π

2

0

{∫
B∗

r3 sin2 θ cos θ · sin ϕ cos ϕ · r2 sin θ dr dθ

}
dϕ

=
∫ π

2

0

sin ϕ · cos ϕ dϕ ·
∫ 1

0

r5 dr ·
∫ π

2

0

sin3 θ cos θ dθ

=
[
1
2

sin2 ϕ

]π
2

0

·
[
r2

6

]1
0

·
[
1
4

sin4 θ

]π
2

0

=
1
2
· 1
6
· 1
4

=
1
48

.
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Figure 28: The meridian cut B∗ in Example 3.1.4 for a =
1
2

and b = 1.

4) Here A is a shell, so ϕ ∈ [0, 2π], and

B∗ = B∗(ϕ) = {(r, θ) | a ≤ r ≤ b, 0 ≤ θ ≤ π}

does not depend on ϕ.
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By the reduction theorem in spherical coordinates,∫
A

(x2 + y2 + z2)−
3
2 dΩ =

∫ 2π

0

{∫
B∗

r−3 r2 sin θ dr dθ

}
dϕ

= 2π

∫ b

1

1
r

dr ·
∫ π

0

sin θ dθ = 2π[ln r]ba · [− cos θ]π0 = 4π ln
(

b

a

)
.

5) Here A is that part of the ball of centrum (0, 0, 0) and radius a, which lies in the upper half
space, thus 0 ≤ ϕ ≤ 2π, and

B∗ = B∗(ϕ) =
{

(r, θ)
∣∣∣ 0 ≤ r ≤ a, 0 ≤ θ ≤ π

2

}
.
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By the reduction theorem in spherical coordinates,∫
A

(x2z + z3) dΩ =
∫ 2π

0

{∫
B∗

(r2 sin2 θ cos2 ϕ r cos θ+r3 cos3 θ)r2 sin θ dr dθ

}
dϕ

=
∫ 2π

0

{∫ a

0

r5

{∫ π
2

0

(cos2 ϕ sin2 θ cos θ+cos3 θ) sin θ dθ

}
dr

}
dϕ

=
[
r6

6

]a

0

∫ 2π

0

{∫ π
2

0

{cos2 ϕ(cos θ−cos3 θ)+cos3 θ} sin θ dθ

}
dϕ

=
a6

6

∫ 2π

0

{∫ π
2

0

{cos2 ϕ cos θ+sin2 ϕ cos3 θ} sin θ dθ

}
dϕ

=
a6

5

∫ 2π

0

[
− cos2 ϕ · 1

2
cos2 θ − sin2 ϕ · 1

4
cos4 θ

]π
2

θ=0

dϕ

=
a6

24

∫ 2π

0

{2 cos2 ϕ + sin2 ϕ}dϕ =
a6

24

∫ 2π

0

{
3
2

+
1
2

cos 2ϕ

}
dϕ

=
a6

24
· 3
2
· 2π =

a6π

8
.
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Figure 29: The meridian cut B∗(ϕ) for ϕ ∈
[
0,

π

4

]
and a = 1 in Example 3.1.6.

6) The domain of integration is in spherical coordinates described by 0 ≤ ϕ ≤ π

4
(from the request

0 ≤ y ≤ x) and

B∗(ϕ) =
{

(r, θ)
∣∣∣ 0 ≤ θ ≤ π

3
, a ≤ r cos θ, r ≤ 2a

}
=

{
(r, θ)

∣∣∣ 0 ≤ θ ≤ π

3
,

a

cos θ
≤ r ≤ 2a

}
,

for ϕ ∈
[
0,

π

4

]
. We see that B∗ = B∗(ϕ) does not change in this ϕ-interval, hence by a
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reduction in spherical coordinates,∫
A

y

z2
dΩ =

∫ π
4

0

{∫
B∗

r sin θ sin ϕ

r2 cos2 θ
· r2 sin θ dr dθ

}
dϕ

=
∫ π

4

0

{∫ π
3

0

(∫ 2a

a
cos θ

r · sin2 θ

cos2 θ
· sinϕ dr

)
dθ

}
dϕ

= [− cos ϕ]
π
4
0 ·
∫ π

3

0

sin2 θ

cos2 θ

[
1
2

r2

]2a

a
cos θ

dθ

=
(

1 − 1√
2

)∫ π
3

0

sin2 θ

cos2 θ

(
2a2 − a2

2
1

cos2 θ

)
dθ

=
(

1− 1√
2

)
a2

{
2
∫ π

3

0

1 − cos2 θ

cos2 θ
dθ− 1

2

∫ π
3

0

tan2 θ · 1
cos2 θ

dθ

}

=
(

1− 1√
2

)
a2

{
2[tan θ − θ]

π
3
0 − 1

2

[
1
3

tan3 θ

]π
3

0

}

=
(

1 − 1√
2

){
2
(√

3 − π

3

)
− 1

6
· 3
√

3
}

=

(
1 −

√
2

2

)(
3
2

√
3 − 2

3
π

)
a2.

Example 3.2 Let a denote a positive constant. Let K0 denote the closed half ball of centrum (0, 0, 0),
of radius 2a, and where z ≥ 0. Finally, let lad K1 denote the open ball of centrum (0, 0, a) and radius
a. We define a closed body of revolution A by removing K1 from K0. Thus A = K0 \ K1. Let B
denote a meridian cut in A.

1) Sketch B, and explain why A in spherical coordinates (r, θ, ϕ) is given by

ϕ ∈ [0, 2π], θ ∈
[
0,

π

2

]
, r ∈ [2a cos θ, 2a].

2) Compute the space integral
∫

A
z2 dΩ.

A Space integral in spherical coordinates.

D Analyze geometrically the meridian half plane (add a line perpendicular to the radius vector).
Then use the spherical reduction of the space integral.

I 1) The figure shows that we have a rectangular triangle with the hypothenuse of length 2a along the
Z-axis and the angle θ between radius vector and the Z-axis. Then a geometrical consideration
shows that the distance from origo to the intersection point with the circle of radius a and
centrum (0, a) is give by 2a cos θ. This gives us the lower limit for r, thus

r ∈ [2a cos θ, 2a].

The domains of the other coordinates are obvious.

2) The integrand is written in spherical coordinates in the following way,

f(x, y, z) = z2 = r2 cos2 θ.

 Space integrals, spherical coordinates



Download free books at BookBooN.com

Calculus 2c-6

 

51  

0

0.5

1

1.5

2

0.5 1 1.5 2

Figure 30: The meridian cut for a = 1 with a radius vector and a perpendicular line.

Then by the reduction theorem for space integrals in spherical coordinates,∫
A

z2 dΩ = 2π

∫ π
2

0

{∫ 2a

2a cos θ

r2 cos2 θ · r2 sin θ dr

}
dθ = 2π

∫ π
2

0

cos2 θ sin θ ·
[
r5

5

]2a

2a cos θ

dθ

=
64πa5

5

∫ π
2

0

{
cos2 − cos7 θ

}
sin θ dθ =

64πa5

5

[
1
8

cos8 θ − 1
3

cos3 θ

]π
2

0

=
64πa5

5
· 8 − 3

8 · 3 =
8πa5

3
.
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Example 3.3 Let

A = {(x, y, z) ∈ R
3 | z≥0, x2+y2+z2≤4,

1
3
(x2+y2)≤z2≤3(x2+y2)}.

1) Sketch the curve of the intersection with the (x, z)-plane.

2) Compute the space integral∫
A

z dΩ.

(It is an advantage here to use spherical coordinates).

A Space integral in spherical coordinates.

D Follow the guidelines of the text.

0

0.5

1

1.5

2

–2 –1 1 2

Figure 31: The intersection curve with the (x, z)-plane. It follows from the symmetry that we are
only interested in the sector of the first quadrant.

I 1) It y = 0, then we get the limitations z ≥ 0, x2 + z2 ≤ 22 and
1
3

x2 ≤ z2 ≤ 3x2, thus

|x|√
3
≤ z ≤

√
3 |x|.

The intersection curve is given in spherical coordinates (r, θ) by{
(rθ)

∣∣∣ r ∈ [0, 2], θ ∈
[π
6

,
π

3

]
∪
[
−π

3
,−π

6

]}
,

where θ is measured from the Z-axis and positive towards the X-axis.
2) The space integral is then computed by reduction in spherical coordinates,∫

A

z dΩ =
∫ 2π

0

{∫ 2

0

{∫ π
3

π
6

r cos θ · r2 sin θ dθ

}
dr

}
dϕ

= 2π

∫ 2

0

r3 dr ·
∫ π

3

π
6

sin θ · cos θ dθ = 2π

[
r4

4

]2
0

[
sin2 θ

2

]π
3

π
6

= 2π · 16
4

· 1
2

(
3
4
− 1

4

)
= 2π · 4 · 1

2
· 1
2

= 2π.

 Space integrals, spherical coordinates
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Example 3.4 Let a and c be positive constants, and let A denote the half shell given by the inequalities

a2 ≤ x2 + y2 + z2 ≤ 4a2, z ≥ 0,

Compute the space integral∫
A

z

c2 + x2 + y2 + z2
dΩ.

A Space integral.

D I have here found four variants:

1) Reduction in spherical coordinates.

2) Reduction in semi-polar coordinates.

3) Reduction by the slicing method.

4) Reduction in rectangular coordinate.

These methods are here numbered according to their increasing difficulty. The fourth variant is
possible, but it is not worth here to produce all the steps involved, because the method cannot be
recommended i this particular case.

I First variant. Spherical coordinates.
The set A is described in spherical coordinates by{

(r, ϕ, θ)
∣∣∣ r ∈ [a, 2a], ϕ ∈ [0, 2π], θ ∈

[
0,

π

2

]}
,

hence by the reduction of the space integral,∫
A

z

c2 + x2 + y2 + z2
dΩ =

∫ 2π

0

{∫ π
2

0

(∫ 2a

a

r cos θ

c2 + r2
· r2 sin θ dr

)
dθ

}
dϕ

= 2π

∫ π
2

0

cos θ sin θ dθ ·
∫ 2a

a

r2

c2 + r2
· r dr [t = r2]

= 2π

[
sin2 θ

2

]π
2

0

·
∫ 4a2

a2

t + c2 − c2

c2 + t
· 1
2

dt

=
π

2

∫ 4a2

a2

{
1 − c2

c2 + t

}
dt =

π

2
[
t − c2 ln

(
c2 + t

)]4a2

t=a2 =
π

2

{
3a2 − c2 ln

(
4a2 + c2

a2 + c2

)}
.

2. variant. Semi-polar coordinates.
We must here split the investigation into two according to whether � ∈ [0, a[ or � ∈ [a, 2a], cf.
the figure.
That part A1 of A, which is given by � ∈ [0, a[, is described in semi-polar coordinates by

{(�, ϕ, z) | � ∈ [0, a[, ϕ ∈ [0, 2π],
√

a2 − �2 ≤ z ≤
√

4a2 − �2}.

That part A2 of A, which is given by � ∈ [a, 2a], is described in semi-polar coordinates by

{(�, ϕ, z) | � ∈ [a, 2a], ϕ ∈ [0, 2π], 0 ≤ z ≤
√

4a2 − �2}.

 Space integrals, spherical coordinates



Download free books at BookBooN.com

Calculus 2c-6

 

54  

0

0.5

1

1.5

2

0.5 1 1.5 2

Figure 32: The meridian cut for a = 1 with the line x = a = 1.

Then by reduction in semi-polar coordinates,∫
A

z

c2 + x2 + y2 + z2
dΩ =

∫
A1

z

c2+x2+y2+z2
dΩ +

∫
A2

z

c2+x2+y2+z2
dΩ

=
∫ 2π

0

{∫ a

0

(∫ √
4a2−�2

√
a2−�2

z

c2+�2+z2
� dz

)
d�

}
dϕ

+
∫ 2π

0

{∫ 2a

1

(∫ √
4a2−�2

0

z

c2+�2+z2
� dz

)
d�

}
dϕ

= 2π

∫ a

0

[
1
2

ln
(
c2+�2+z2

)]√4a2−�2

z=
√

a2−�2

� d� + 2π

∫ 2a

a

[
1
2

ln
(
c2+�2+z2

)]√4a2−�

z=0

� d�

= π

∫ a

0

{
ln
(
c2+4a2

)−ln
(
c2+a2

)}
� d� + π

∫ 2a

a

{
ln
(
c2+4a2

)−ln
(
c2+�2

)}
� d�,

thus∫
A

z

c2 + x2 + y2 + z2
dΩ

= π
{
ln
(
c2+4a2

)−ln
(
c2+a2

)} · a2

2
+ π ln

(
c2+4a2

) · 1
2
{
4a2−a2

}
,

−π

2

∫ 4a2

a1
ln
(
c2 + t

)
dt (ved t = �2)

=
π

2
· 4a2 ln

(
c2+4a2

)− π

2
a2 ln

(
c2+a2

)− π

2
[(

c2 + t
)

ln
(
c2 + t

)−t
]4a2

t=a2

=
π

2
· 4a2 ln

(
c2+4a2

)− π

2
a2 ln

(
c2+a2

)− π

2
(
c2+4a2

)
ln
(
c2+4a2

)
+

π

2
· 4a2 +

π

2
(
c2+a2

)
ln
(
c2+a2

)− π

2
· a2

=
π

2
·
{

3a2 − c2 ln
(

c2 + 4a2

c2 + a2

)}
.

Third variant. The slicing method.
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The plane at height z = [0, a[ intersects A in an annulus B(z), which is described in polar
coordinates by

{(�, ϕ) | ϕ ∈ [0, 2π],
√

a2 − z2 ≤ � ≤
√

4a2 − z2}.

The plane at height z ∈ [a, 2a] intersects A in a disc B(z), which is described in polar coordinates
by

{(�, ϕ) | ϕ ∈ [0, 2π], 0 ≤ � ≤
√

4a2 − z2}.

 Space integrals, spherical coordinates
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If we first integrate over B(z) and then with respect to z, we get the following reduction,∫
A

z

c2 + x2 + y2 + z2
dΩ

=
∫ a

0

{∫
B(z)

z

c2+x2+y2+z2
dS

}
dz +

∫ 2a

a

{∫
B(z)

z

c2+x2+y2+z2
dS

}
dz

=
∫ a

0

{∫ 2π

0

(∫ √
4a2−z2

√
a2−z2

z

c2 + z2 + �2
� d�

)
dϕ

}
dz

+
∫ 2a

a

{∫ 2π

0

(∫ √
4a2−z2

0

z

c2 + z2 + �2
� d�

)
dϕ

}
dz,

hence∫
A

z

c2 + x2 + y2 + z2
dΩ

= 2π

∫ a

0

[
1
2

ln
(
c2 + z2 + �2

)]√4a2−z2

�=
√

a2−z2

z dz + 2π

∫ 2a

a

[
1
2

ln
(
c2 + z2 + �2

)]√4a2−z2

�=0

z dz

= π

∫ a

0

{
ln
(
c2 + 4a2

)− ln
(
c2 + a2

)}
z dz + π

∫ 2a

a

{
ln
(
c2 + 4a2

)− ln
(
c2 + z2

)}
dz

= π · a2

2
ln
(

c2 + 4a2

c2 + a2

)
+ π ln

(
c2 + 4a2

) · [z2

2

]2a

a

− π

2

∫ 4a2

a2
ln
(
c2 + t

)
dt (“t = z2”)

=
π

2
· a2 ln

(
c2 + 4a2

c2 + a2

)
+

π

2
· 3a2 ln

(
c2 + 4a2

)− π

2
[(

c2 + t
)
ln
(
c2 + t

)− t
]4a2

t=a2

= 2πa2 ln
(
c2 + 4a2

)− π

2
a2 ln

(
c2 + a2

)
−π

2
(c2+4a2) ln(c2+4a2) +

π

2
(c2+2) ln(c2+a2) +

π

2
· 3a2

=
π

2

{
3a2 − c2 ln

(
c2 + 4a2

c2 + a2

)}
.

Fourth variant. Rectangular coordinates.
This is a very impossible variant, which I have only been through once. The computations here
are only sketchy just to scare people away, because it cannot be recommended.

Let

A0 = {(x, y, z) | a2 ≤ x2 + y2 + z2 ≤ 4a2, x ≥ 0, y ≥ 0, z ≥ 0}
be that part of A, which lies in the first octant. Then by an argument of symmetry on the
integrand we conclude that∫

A

z

c2 + x2 + y2 + z2
dΩ = 4

∫
A0

z

c2 + x2 + y2 + z2
dΩ.

When x ∈ [0, a[ is fixed, the corresponding plane intersects the set A0 in a domain B(x), which
is given in rectangular coordinates by

{(y, z) | y ∈ [0,
√

a2 − x2],
√

a2 − x2 − y2 ≤ z ≤
√

4a2 − x2 − y2}
∪{(y, z) | y ∈ ]

√
a2 − x2,

√
4a2 − x2], 0 ≤ z ≤

√
4a2 − x2 − y2}.
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Remark. We see that the description in polar coordinates would be easier here, but I shall
here demonstrate how bad things can be if one only uses rectangular coordinates. ♦

Similarly, A0 is cut for x ∈ [a, 2a] into a quarter disc

{(y, z) | y ∈ [0,
√

4a2 − x2], 0 ≤ z ≤
√

4a2 − x2 − y2}.

Then by reduction in rectangular coordinates∫
A

z

c2 + x2 + y2 + z2
dΩ = 4

∫
A0

z

c2 + x2 + y2 + z2
dΩ

= 4
∫ a

0

{∫ √
a2−x2

0

(∫ √
4a2−x2−y2

√
a2−x2−y2

z

c2 + x2 + y2 + z2
dz

)
dy

}
dx

+4
∫ a

0

{∫ √
4a2−x2

√
a2−x2

(∫ √
4a2−x2−y2

0

z

c2 + x2 + y2 + z2
dz

)
dy

}
dx

+4
∫ 2a

a

{∫ √
4a2−x2

0

(∫ √
4a2−x2−y2

0

z

c2 + x2 + y2 + z2
dz

)
dy

}
dx

= 2
∫ a

0

{∫ √
a2−x2

0

{
ln
(
c2 + 4a2

)− ln
(
c2 + a2

)}
dy

}
dx

+2
∫ a

0

{∫ √
4a2−x2

√
a2−x2

{
ln
(
c2 + 4a2

)− ln
(
c2 + x2 + y2

)}
dy

}
dx

+2
∫ 2a

a

{∫ √
4a2−x2

0

{
ln
(
c2 + 4a2

)− ln
(
c2 + x2 + y2

)}
dy

}
dx.

The former of these integrals is easy to compute, because it is a constant integrated over a
quarter circle,

2
∫ a

0

{∫ √
a2−x2

0

{
ln
(
c2+4a2

)−ln
(
c2+a2

)}
dy

}
dx =

π

2
a2 ln

(
c2+4a2

c2+a2

)
.

The following two integrals are very difficult, if one only sticks to rectangular coordinates. But
even in polar coordinates each of these two integrals are very difficult to compute, though
nothing in comparison with the rectangular variant.
We shall of course start by a geometric analysis, because the integrand is the same in both
cases. We can therefore join the two integrations over one single one over the domain B1 ∪B2,
which again is more suitable for a polar description:{

(�, ϕ)
∣∣∣ � ∈ [a, 2a], ϕ ∈

[
0,

π

2

]}
.

By using this trick we get by insertion,∫
A

z

c2 + x2 + y2 + z2
dΩ

=
π

2
a2 ln

(
c2 + 4a2

c2 + a2

)
+ 2
∫ π

2

0

(∫ 2a

a

{
ln
(
c2 + 4a2

)− ln
(
c2 + �2

)}
� d�

)
dϕ,
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0

0.5

1

1.5

2

0.5 1 1.5 2

Figure 33: The domains B1 and B2 in the meridian half plane.

and the following computations are reduced to variants of those from the second and the third
variant.

Remark. To my knowledge the full computation in rectangular coordinates without any trick
has only been carried through once. We also tried to use MAPLE in an earlier version, at that
did not work at all. The reason is that one has to apply a dirty rectangular trick at some place,
which cannot be foreseen by the computer. ♦
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Example 3.5 Let a be a positive constant, and let

A =

{
(x, y, z) ∈ R

3

∣∣∣∣∣ x2 + y2 + z2 ≤ a2, z ≤
√

x2 + y2

3

}
.

1) Sketch a meridian half plane, and explain why A is given in spherical coordinates (r, θ, ϕ) by

r ∈ [0, a], θ ∈
[π
3

, π
]
, ϕ ∈ [0, 2π].

2) Compute the space integral∫
A

(x2 + z2) dΩ.

A Space integral in spherical coordinate.

D The space integral is here calculated in four variants.

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

y

0.2 0.4 0.6 0.8 1
x

Figure 34: The meridian cut A� for a = 1.

I 1) In the meridian half plane the cut A� has the line z =
1√
3

� as an upper bound, corresponding to

θ ∈
[π
3

, π
]
. The other variables are not restricted further, so A is given in spherical coordinates

by

r ∈ [0, a], θ ∈
[π
3

, π
]
, ϕ ∈ [0, 2π].

2) The space integral is here computed in four variants.
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First variant. Direct insertion:∫
A

(x2 + z2) dΩ =
∫ 2π

0

{∫ π

π
3

(∫ a

0

(
r2 sin2 θ cos2 ϕ + r2 cos2 θ

)
r2 sin θ dr

)
dθ

}
dϕ

=
a5

5

∫ 2π

0

{∫ π

π
3

{
(1 − cos2 θ) cos2 ϕ + cos2 θ

}
sin θ

}
dϕ

=
a5

5

∫ 2π

0

{[
− cos θ +

1
3

cos3 θ

]π

π
3

cos2 ϕ +
[
−1

3
cos3 θ

]π

π
3

}
dϕ

=
a5

5

∫ 2π

0

{(
1 − 1

3
+

1
2
− 1

24

)
cos2 ϕ +

(
1
3

+
1
24

)}
dϕ

=
a5

5

{(
3
2
− 9

24

)
π +

9
24

· 2π

}
=

a5

5
π

{
3
2
− 3

8
+

3
4

}

=
3π

5
a5

{
1
2

+
1
8

}
=

3π

5
· a5 · 5

8
=

3π

8
a5.

Second variant. A small reduction:
It follows from x2 + z2 = r2 − y2 that∫

A

(x2 + z2) dΩ =
∫

A

(r2 − y2)dΩ

=
∫ 2π

0

{∫ π

π
3

(∫ a

0

r2
(
1 − sin2 θ sin2 ϕ

)
r2 sin θ dr

)
dθ

}
dϕ

=
a5

5

∫ π

π
3

{
2π sin θ − π sin3 θ

}
dθ

= π · a5

5

{
[−2 cos θ]ππ

3
−
∫ π

π
3

(
1 − cos2 θ

)
sin θ dθ

}

= π · a5

5

{
2 + 1 +

[
cos θ − 1

3
cos3 θ

]π

π
3

}
= π · a5

5
·
{

3 +
(
−1 +

1
3
− 1

2
+

1
24

)}

= π · a5

5

(
3
2

+
3
8

)
= π · a5

5
· 15

8
=

3π

8
a5.

Third variant. A symmetric argument:
For symmetric reasons,∫

A

(x2 + z2) dΩ =
∫

A

(y2 + z2) dΩ =
1
2

∫
A

{
(x2 + y2 + z2) + z2

}
dΩ

=
1
2

∫ 2π

0

{∫ π

π
3

(∫ a

0

(
r2 + r2 cos2 θ

)
r2 sin θ dr

)
dθ

}
dϕ

=
1
2
· 2π

∫ π

π
3

(1 + cos2 θ) sin θ dθ ·
∫ a

0

r4 dr = π

[
− cos θ − 1

3
cos3 θ

]π

π
3

· a5

5

= π · a5

5

{
1 +

1
3

+
1
2

+
1

3 · 8
}

= π · a5

5

(
3
2

+
3
8

)
= π · a5

5
· 15

8
=

3π

8
a5.

Fourth variant. The slicing method.
At the height z ∈ ] − a, 0] the body A is cut into a disc Dz given by

0 ≤ � ≤
√

a2 − z2.
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If instead z ∈
]
0,

a

2

[
, then A is cut into an annulus Dz given by

√
3 z ≤ � ≤

√
a2 − z2.

For symmetric reasons we have for any z ∈
]
−a,

a

2

[
that

∫
Dz

(x2 + z2) dS =
∫

Dz

(y2 + z2) dS =
∫

Dz

{
1
2
(x2 + y2) + z2

}
dS.

Then we get∫
A

(x2 + z2) dΩ

=
∫ 0

−a

{∫
Dz

{
1
2
(x2 + y2) + z2

}
dS

}
dz

∫ a
2

0

{∫
Dz

{
1
2
(x2 + y2) + z2

}
dS

}
dz

=
∫ 0

−a

{∫ 2π

0

(∫ √
a2−z2

0

1
2

�2 · � d�

)
dϕ + z2 areal(Dz)

}
dz

+
∫ a

2

0

{∫ 2π

0

(∫ √
a2−z2

√
3 z

1
2

�2 · � d�

)
dϕ + z2 areal(Dz)

}
dz,

i.e. ∫
A

(x2 + z2) dΩ

=
∫ 0

−a

{
2π

[
1
8

�4

]√a2−z2

0

+ z2π
(
a2 − z2

)}
dz

+
∫ a

2

0

{
2π

[
1
8

�4

]√a2−z2

√
3 z

+ z2π
{
(a2 − z2) − 3z2

}}
dz

=
π

4

∫ 0

−a

{
(a2 − z2)2 + 4z2(a2 − z2)

}

+
π

4

∫ a
2

0

{
(a2 − z2)2 − 9z4 + 4z2(a2 − 4z2)

}
dz

=
π

2

∫ 0

−a

{
a4 − 2a2z2 + z4 + 4a2z2 − 4z4

}
dz

+
π

4

∫ a
2

0

{
a4 − 2a2z2 + z4 − 9z4 + 4a2z2 − 16z4

}
dz

=
π

4

∫ 0

−a

{
a4+2a2z2−3z4

}
dz +

π

4

∫ a
2

0

{
a4+2a2z2−24z4

}
dz

=
π

4

{[
a4z+

2
3

a2z3− 3
5

z5

]0
−a

+
[
a4z+

2
3

a2z3− 24
5

z5

] a
2

0

}

=
π

4

{
a5+

2
3

a5− 3
5

a5+
1
2

a5− 24
5 · 32

a5

}

=
π

4
a5

{
1+

2
3
− 3

5
+

1
2

+
1
12

− 3
20

}
=

π

4
a5

{
3
2

+
9
12

− 3
4

}
=

3π

8
a5.
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4 Volume

Example 4.1 Set up a formula for the volume of the ellipsoid by applying that an ellipse of half axes
a and b has the area πab.

A Volume of an ellipsoid found by a space integral.

D Use the slicing method and describe the ellipse for every z, and continue by computing the corre-
sponding space integral.

I Let the ellipsoid be given by the inequality

x2

a2
+

y2

b2
+

z2

c2
≤ 1.

For any fixed z ∈ [−c, c] let B(z) denote the ellipse (in (x, y)-coordinates) given by

x2

a2
+

y2

b2
≤ 1 − z2

c2
.
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When z ∈ ] − c, c[, this describes an ellipse with the half axes

a

√
1 − z2

c2
og b

√
1 − z2

c2
.

Then by the slicing method,

vol(B) =
∫ c

−c

{∫
B(z)

dx dy

}
dz =

∫ c

−c

area(B(z)) dz

=
∫ c

−c

πa

√
1 − z2

c2
· b
√

1 − z2

c2
dz = πab

∫ c

−c

(
1 − z2

c2

)
dz

= 2πabc

∫ 1

0

(1 − t2) dt = 2πabc

[
t − 1

3
t3
]1
0

=
4π

3
abc.

C As a weak control we know that for the solid ball of radius r = a = b = c we get the well-known

volume
4π

3
r3.

Example 4.2 Let B be a closed domain in the (x, y)-plane, and let P0 be a point of z-coordinate h.
Draw linear segments through P0 and the points of B. The union of these are making up a (solid)
cone. One calls B the base of the cone and h is the height of the cone.

1) A plane of constant z ∈ [0, h] intersects the cone in a plane domain B(z). Show that the area of

B(z) is equal to the area of B multiplied by the factor
(
1 − z

h

)2

. (Consider e.g. elements of area

which correspond to each other by the segments mentioned above).

2) Prove that the volume of the cone is
1
3

hA, where A is the area of the base B.

3) Prove that the z-coordinate of the centre of gravity is given by
1
4

h.

A The volume of a cone found by a space integral.

D Follow the guidelines given above.

I 1) By considering a rectangular element of area in B we see by using similar triangles that every
length in the corresponding element of area in B(z) is diminished by the factor

h − z

h
= 1 − z

h
.

The element of area is determined by two lengths (“length” and “breadth”), so the area is

reduced by the factor
(
1 − z

h

)2

, i.e.

area(B(z)) =
(
1 − z

h

)2

area B =
(
1 − z

h

)2

A.

 Volume



Download free books at BookBooN.com

Calculus 2c-6

 

64  

2) Using the result from 1) we get by the slicing method,

vol(K) =
∫

K

dΩ =
∫ h

0

{∫
B(z)

dx dy

}
dz =

∫ h

0

area((B(z)) dz

=
∫ h

0

(
1 − z

h

)2

Adz = Ah

[
−1

3

(
1 − z

h

)3
]h

0

=
1
3

hA.

3) Let the cone be homogeneously coated (density μ > 0). Then the mass is

M = μ vol(K) =
1
3

μhA.

The z-coordinate ζ of the centre of gravity is given by

M · ζ = μ

∫
K

z dΩ,

thus

ζ =
μ

M

∫
K

z dΩ =
μ

1
3 μhA

∫ h

0

z · areal(B(z)) dz =
3

hA

∫ h

0

z
(
1 − z

h

)2

Adz

= 3
∫ h

0

z

h

(
1 − z

h

)2

dz = 3h

∫ 1

0

(1 − t)t2 dt = 3h

∫ 1

0

(t2 − t3) dt

= 3h

[
1
3

t3 − 1
4

t4
]1
0

= 3h

(
1
3
− 1

4

)
=

h

4
.

Example 4.3 Find the volume of the point set

Ω = {(x, y, z) | x2 + y2 ≤ a2, |x| ≤ a + y, 0 ≤ z ≤ x2 + y2}.
Then compute the space integral∫

Ω

(xy + 1) dΩ.

A Volume and space integral.

D Sketch the projection B of Ω onto the (x, y)-plane. Find the volume and the space integral.

I The volume is

vol(Ω) =
∫

B

(x2 + y2) dx dy =
∫ π

0

{∫ a

0

�2 · � d

}
dϕ +

∫ 0

−a

{∫ a+y

−a−y

(x2 + y2) dx

}
dy

= π · a4

4
+
∫ 0

−a

[
1
3

x3 + y2x

]a+y

x=−a−y

dy =
πa4

4
+
∫ 0

−a

{
2
3

(a + y)3 + 2y2(a + y)
}

dy

=
πa4

4
+
[
1
6

(a + y)4 +
2
3

ay3 +
1
2

y4

]0
−a

=
πa4

4
+

1
6

a4 +
2
3

a4 − 1
2

a4

= a4

(
π

4
+

1
6

+
2
3
− 1

2

)
= a4

(
π

4
+

1
3

)
.
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–1

–0.5

0

0.5

1

–1 –0.5 0.5 1

Figure 35: The projection B of Ω for a = 1.

Due to the symmetry with respect to the Y -axis, we get for the space integral that∫
Ω

(xy + 1) dΩ =
∫

B

xy(x2 + y2) dx dy + vol(Ω) = 0 + vol(Ω) = a4

(
π

4
+

1
3

)
.

Example 4.4 Let C denote the cylindric surface which generators are parallel to the Z-axis and the
intersection curve of which with the (x, y)-plane has the equation y2 = x. Find the volume of the point
set Ω, which is bounded by

1) the cylindric surface C,

2) the (x, y)plane, and

3) the plane of the equation 2x + 2y + z = 4.

A Volume.

D Sketch Ω, or at least the projection D of Ω onto the (x, y)-plane.

I It follows from

D = {(x, y) | −2 ≤ y ≤ 1, y2 ≤ x ≤ 2 − y},

and

0 ≤ z ≤ 4 − 2x − 2y = 2(2 − x − y),

 Volume



Download free books at BookBooN.com

Calculus 2c-6

 

66  

0

1

2

3

4

–2
–1.5

–1

0.5
1

t

1

2

3

4

s

Figure 36: The body Ω.
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0.5
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Figure 37: The projection D of Ω onto the (x, y)-plane.

that

vol(Ω) =
∫

D

2(2 − x − y) dx dy =
∫ 1

−2

{∫ 2−y

y2
2(2 − x − y)dx

}
dy

=
∫ 1

−2

[−(2 − x − y)2
]2−y

x=y2 dy =
∫ 1

−2

(
2 − y − y2

)2
dy

=
∫ 1

−2

(y + 2)2(y − 1)2 dy =
∫ 3

2

− 3
2

(
t +

3
2

)2(
t − 3

2

)2

dt = 2
∫ 3

2

0

(
t2 − 9

4

)2

dt

= 2
∫ 3

2

0

(
t4 − 9

2
t2 +

81
16

)
dt = 2

{
1
5

(
3
2

)5

− 3
2

(
3
2

)3

+
81
16

· 3
2

}

=
2
32

{
1
5
· 35 − 2 · 34 + 35

}
=

34

16
·
{

3
5

+ 1
}

=
81
16

· 8
5

=
81
10

.

 Volume
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Example 4.5 Let

f(x, y) = ln
(
2 − 2x2 − 3y2

)
+ 2 − 4x2 − 6y2,

and let B be that part of the (x, y)-plane, in which f(x, y) ≥ 0. Let L denote the point set in the space
which is given by

(x, y) ∈ B, 0 < leqz ≤ f(x, y).

Find the volume of L by the slicing method.

A Volume.

D Consider f(x, y) = ln(2 − 2x2 − 3y2) + 2 − 4x2 − 6y2 as a function in one single variable.

 Volume
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Figure 38: The domain B, in which f(x, y) ≥ 0.

I Since f(x, y) = 0, for 2x2 + 3y2 = 1, the domain B is bounded by the ellipse

⎛
⎜⎜⎝ x

1√
2

⎞
⎟⎟⎠

2

+

⎛
⎜⎜⎝ y

1√
3

⎞
⎟⎟⎠

2

= 1.

This ellipse has the half axes
1√
2

and
1√
3

and the area
π√
6
.

0

0.5

1

1.5

2

2.5

–0.6
–0.4

–0.2

0.2
0.4

0.6
y

–0.6
–0.4

–0.2

0.4
0.6

x

Figure 39: The body L.

The function f(x, y) is in reality only a function in t = 1 − 2x2 − 3y2, t ∈ [0, 1], since we have by
this substitution

z = f(x, y) = F (t) = ln(1 + t) + 2t, t ∈ [0, 1].

When t ∈ [0, 1] is fixed, then 2x2 + 3y2 ≤ 1 − t describes an elliptic disc At of area

area (At) =
π√
6

(1 − t),

 Volume
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thus we get the volume by the slicing method,

vol(L) =
∫ 1

0

area (At) · dz

dt
dt =

∫ 1

0

π√
6

(1 − t) ·
{

1
1 + t

+ 2
}

dt

=
π√
6

∫ 1

0

{
2 − (1 + t)

1 + t
+ 2 − 2t

}
dt =

π√
6

[
ln(1 + t) − t + 2t − t2

]1
0

=
π√
6

ln 2.

Example 4.6 Find the volume of the point set

Q = {(x, y, z) ∈ R
3 | x2+y2 ≤ 2, 0 ≤ z ≤ 4−(x2+y4

)2}.
A Volume.

D Sketch the set and just compute.

0

1

2

3

4

–1
–0.5

0.5
1

y

–1
–0.5

0.5

1 x

Figure 40: The point set Q.

I The set Q is cut at height z ∈ [0, 4] in a disc of radius 4
√

4 − z. Then by the slicing method,

vol(Q) =
∫ 4

0

π
√

4 − z dz = π

[
−2

3
(√

4 − z
)3]4

0

=
2
3

π · (
√

4)3 =
16
3

π.

Alternatively we first integrate with respect to z,

vol(Q) =
∫

K(0;
√

2)

{
4 − (x2 + y2)2

}
dx dy = 4area

(
K(0;

√
2)
)
− 2π

∫ √
2

0

�4 · � d�

= 4 · 2π − 2π

{
(
√

2)6

6

}
= 8π − 8π

3
=

16π

3
.
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Example 4.7 Let B(a) denote the bounded point set in the plane which is bounded by the parabola
y = x2 and the line y = a. Let B denote the unbounded point set which is defined by the inequalities
y ≥ x2. Let the function f : R

2 → R be given by

f(x, y) = |x| exp
(
x2 − 2y

)
,

and put

A(a) = {(x, y, z) | (x, y) ∈ B(a), 0 ≤ z ≤ f(x, y)}.
1) Find the volume of A(a).

2) Prove that the improper plane integral∫
B

f(x, y) dS

is convergent, and find its value.

A Volume and improper plane integral.

D Sketch B(a) and B; find vol A(a), and compute the improper plane integral.

0

1

2

3

4

5

–2 –1 1 2

x

Figure 41: The parabola with the truncation at y = a = 2.

I 1) We get by direct computation,

vol(A(a)) =
∫

B(a)

f(x, y) dS = 2
∫ a

0

{∫ √
y

0

x · ex2
e−2y dx

}
dy

= 2
∫ a

0

e−2y

[
1
2

ex2
]√y

x=0

dy =
∫ a

0

e−2y (ey − 1) dy

=
∫ a

0

(
e−y − e−2y

)
dy =

[
−e−y +

1
2

e−2y

]a

0

=
1
2
− e−a +

1
2

e−2a.

2) Since f(x, y) ≥ 0, we get∫
B

f(x, y) dS = lim
a→+∞ intB(a)f(x, y) dS = lim

a→+∞

{
1
2
− e−a +

1
2

e−2a

}
=

1
2
.

 Volume
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5 Moment of inertia and centre of gravity

Example 5.1 Given the solid ellipsoid

Ω =
{

(x, y, z)
∣∣∣∣ (x

a

)2

+
(y

b

)2

+
(z

c

)2

≤ 1
}

.

1) Compute the space integral

∫
Ω

√(x

a

)2

+
(y

b

)2

+
(z

c

)2

dΩ.

2) Let Ω be homogeneously coated by a mass, where M denotes the total mass. Find the moment of
inertia Ix of Ω with respect to the X-axis expressed by a, b, c and M .

A Space integral; moment of inertia.

D Follow the guidelines.
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I 1) By putting

(x, y, z) = (au, bv, cw), u2 + v2 + w2 ≤ 1,

and then applying spherical coordinates in the (u, v, w)-space we get∫
Ω

√(x

a

)2

+
(y

b

)2

+
(z

c

)2

dΩ = abc

∫
K(0;1)

√
u2+v2+w2 du dv dw

= abc

∫ 2π

0

{∫ π

0

{∫ 1

0

� · �2 sin θ d�

}
dθ

}
dϕ = abc · 2π · 2 · 1

4
= abcπ.

2) It is well-known that the volume is vol(Ω) =
4π

3
abc, hence the mass can be written M =

4π

3
abc · μ, from which we get the density μ =

3M

4πabc
.

Due to the symmetry, the moment of inertia with respect to the X-axis is given by

Ix = μ

∫
Ω

(y2 + z2) dΩ = μ

∫
Ω

y2 dΩ + μ

∫
Ω

z2 dΩ

= μb2(abc)
∫

K(0;1)

v2dudvdw + μc2(abc)
∫

K(0;1)

w2dudvdw

= μabc(b2+c2)
∫

K(0;1)

u2dudvdw = μ(b2+c2)abc

∫ 1

−1

u2π(1−u2)du

= 2μπabc(b2+c2)
∫ 1

0

(u2−u4)du = 2 · 3M

4πabc
abc(b2+c2)

(
1
3
− 1

5

)

=
3
2

M (b2 + c2) · 2
15

=
1
5

M(b2 + c2).

Example 5.2 Find the centre of gravity for the part of the intersection of the ball of centrum (0, 0, 0)
and of radius a > 0 in the first octant, i.e. given by the inequalities

x ≥ 0, y ≥ 0, z ≥ 0, x2 + y2 + z2 ≤ a2.

A Centre of gravity.

D First reduce to the case a = 1. Find vol(Ω). Compute

ξ =
1

vol(Ω)

∫
Ω

x dΩ.

It follows by the symmetry that ξ = η = ζ.

I Of geometrical reasons we may assume that a = 1, thus

Ω = {(x, y, z) | x ≥ 0, y ≥ 0, z ≥ 0, x2 + y2 + z2 ≤ 1}.

If (ξ, η, ζ) denotes the centre of gravity for Ω, then (aξ, aη, aζ) is the centre of gravity for the initial
set of radius a.

It follows clearly by the symmetry that ξ = η = ζ.

 Moment of inertia and centre of gravity
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Figure 42: The set Ω for a = 1.

Finally,

vol(Ω) =
1
8
· 4π

3
· 13 =

π

6
.

It follows that

ξ =
1

vol(Ω)
=

6
π

∫ 1

0

x

{∫
y2+z2≤1−x2

dy dz

}
dx

=
6
π

∫ 1

0

x · 1
4

π
(
1 − x2

)
dx =

3
2

∫ 1

0

(
x − x3

)
dx =

3
2

(
1
2
− 1

4

)
=

3
8
.

Therefore, if a = 1, then

(ξ, η, ζ) =
(

3
8

,
3
8

,
3
8

)
.

We get for a general a > 0,

(ξ, η, ζ) =
(

3
8

a ,
3
8

a ,
3
8

a

)
.
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Example 5.3 Let R denote a positive constant. Consider the point set

T = {(x, y, z) ∈ R
3 | 0 ≤ z, x2+y2+z2 ≤ R2, x2+y2 ≤ 3z2}.

1) Explain why T is given in spherical coordinates by

r ∈ [0, R], θ ∈
[
0,

π

3

]
, ϕ ∈ [0, 2π].

2) Compute the space integrals
∫

T
1 dx dy dz and

∫
T

z dx dy dz.

3) Find the coordinates of the centre of gravity of T .

4) Find the area of the boundary surface of T .

A Spherical coordinates, space integrals, centre of gravity and surface area.

D First make a sketch in the meridian half plane.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 43: The sketch in the meridian half plane for R = 1.

I 1) The sketch of the meridian half plane shows that

z ≥ 0, r2 ≤ R2, �2 ≤ 3z2, r2 = �2 + z2,

in spherical coordinates is expressed by

r ∈ [0, R], θ ∈
[
0,

π

3

]
, ϕ ∈ [0, 2π].

2) The volume is

vol(T ) =
∫

T

1 dx dy dz =
∫ R

2

0

π · 3z2 dz +
∫ R

R
2

π
(
R2 − z2

)
dz

= π

(
R

2

)3

+ π

[
R2z − 1

3
z3

]R

R
2

=
π

8
R3 + π

{
R3−R3

3
−R3

2
+

1
24

R3

}

= πR3

{
1
8

+1− 1
3
− 1

2
+

1
24

}
=

πR3

24
{3 + 24 − 8 − 12 + 1} =

πR3

3
.
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Similarly,∫
T

z dx dy dz =
∫ R

2

0

z · π · 3z2 dz +
∫ R

R
2

z · π (R2 − z2
)

dz

=
3π

4
·
(

R

2

)4

+ π

[
R2

2
z2 − 1

4
z4

]R

R
2

=
3π

64
R4 + π

{
R4

2
− R4

4
− R4

8
+

R4

64

}

=
πR4

64
{3 + 32 − 16 − 8 + 1} =

12πR4

64
=

3π

16
R4.

3) Of symmetric reasons the centre of gravity must lie on the Z-axis, so ξ = η = 0, and

ζ =
1

vol(T )

∫
T

z dx dy dz =
3

πR3
· 3π

16
R4 =

9
16

R,

where we have used the results of 2).

 Moment of inertia and centre of gravity
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4) The boundary curve M in the meridian half plane is now split up into

M1 : � =
√

3 · z, ds =
√

1 + 3 dz = 2 dz, z ∈
[
0,

R

2

]
,

M2 : � =
√

R2 − z2, ds =
R√

R2 − z2
dz, z ∈

[
R

2
, R

]
,

so the surface area becomes

2π

∫
M

P ds = 2π

∫ R
2

0

√
3 · z · 2 dz + 2π

∫ R

R
2

√
R2 − z2 · R√

R2 − z2
dz

= 2π
√

3
[
z2
]R

2

0
+ 2πR · R

2
= 2

√
3 π · R2

4
+ πR2 =

(
1 +

√
3

2

)
π R2.

Example 5.4 Let Ω denote that part of the closed ball K(0; a), which lies above the (x, y)-plane and
inside a cylindric surface with its generators parallel to the Z-axes through the curve in the (x, y)-plane
given by the equation

� = a
√

cos(2ϕ), −π

4
≤ ϕ ≤ π

4
.

1) Find the volume of Ω.

2) Find the z-coordinate of the centre of gravity for Ω.

A Volume; centre of gravity.

D Sketch Ω and compute vol(Ω). Find the centre of gravity.

I 1) Since z = +
√

a2 − �2 on the shell, we get

vol(Ω) =
∫

B

√
a2 − �2 dS =

∫ π
4

−π
4

{∫ a
√

cos 2ϕ

0

√
a2 − �2 · � d�

}
dϕ

=
∫ π

4

−π
4

[
−1

2
· 1
3
(
a2 − �2

) 3
2

]a
√

cos 2ϕ

�=0

dϕ =
1
3

∫ π
4

−π
4

{
a3 − a3(1 − cos 2ϕ)

3
2

}
dϕ

= 2 · a3

3

∫ π
4

0

{
1 − (2 sin2 ϕ)

3
2

}
dϕ =

2
3

a3

∫ π
4

0

{
1 − 2

√
2 sin3 ϕ

}
dϕ

=
2
3

a3 · π

4
− 2

3
a3 · 2

√
2
∫ π

4

0

(
1 − cos2 ϕ

)
sin ϕ dϕ

=
π

6
a3 +

4
√

2
3

a3

[
cos ϕ − 1

3
cos3 ϕ

]π
4

0

=
π

6
a3 +

4
√

2
3

a3

(
1√
2
− 1

6
√

2
− 2

3

)

=
π

6
a3 +

4
3
· 5
6

a3 − 8
√

2
9

a3 = a3

(
π

6
+

10
9

− 8
√

2
9

)
.
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Figure 44: The domain Ω for a = 1.

2) We have due to the symmetry,∫
Ω

y dΩ =
∫

B

y
√

a2 − �2 dS = 0.

Furthermore,∫
Ω

z dΩ =
∫

B

{∫ √
a2−�2

0

z dz

}
dS =

1
2

∫
B

(
a2 − �2

)
dS

=
1
2

∫ π
4

−π
4

{∫ a
√

cos 2ϕ

0

(
a2 − �2

)
�

}
dϕ =

∫ π
4

0

[
1
2

a2�2 − 1
4

�4

]a
√

cos 2ϕ

0

dϕ

=
a4

4

∫ π
4

0

{2 cos 2ϕ − cos2 2ϕ}dϕ

=
a4

4
[sin 2ϕ]

π
4
0 − a4

4
· 1
2

∫ π
4

0

{1 + cos 4ϕ}dϕ =
a4

4
− a4π

32
=

a4

32
(8 − π).

Finally, we get by interchanging the order of integration that∫
Ω

x dΩ =
∫

B

x
√

a2 − �2 dS = 2
∫ π

4

0

cos ϕ

{∫ a
√

cos 2ϕ

0

√
a2 − �2 · �2 d�

}
dϕ

= 2a4

∫ π
4

0

cos ϕ

{∫ √
cos 2ϕ

0

t2
√

1 − t2 dt

}
dϕ

= 2a4

∫ 1

0

t2
√

1 − t2

{∫ 1
2 Arccos(t2)

0

cos ϕ dϕ

}
dt

= 2a4

∫ 1

0

t2
√

1 − t2 sin
(

1
2

Arccos(t2)
)

dt

= 2a4

∫ 1

0

t2
√

1 − t2 ·
√

1 − cos
(

2 · 1
2

Arccos (t2)
)

dt

= 2a4

∫ 1

0

t2
√

1 − t2 ·
√

1 − t2 dt = 2a4

∫ 1

0

t2(1 − t2) dt = 2a4

{
1
3
− 1

5

}
=

4
15

a4.
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The centre of gravity is

ξ =
1

vol(Ω)

∫
Ω

x dΩ =
a

π
6 + 10

9 − 8
√

2
9

(
4
15

, 0,
8 − π

32

)
.
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6 Improper space integrals

Example 6.1 Check in each of the following cases if the given space integral is convergent or diver-
gent; find the value in case of convergency.

1) The space integral
∫

A

1√
x + y + z

dΩ, where the domain of integration A is described by

x ≥ 0, y ≥ 0, x + y ≤ 1, 0 ≤ z ≤ x + y.

2) The space integral
∫

A

z3

(x2 + y2 + z2)
3
2

dΩ, where the domain of integration A is described by

x2 + y2 ≤ z4 ≤ 1, z ≥ 0.

3) The space integral
∫

A

1
1 + xyz

dΩ, where the domain of integration A is described by

r ∈ [0,+∞[, θ ∈
[π
3

,
π

2

]
, ϕ ∈

[π
6

,
π

3

]
.

4) The space integral
∫

A

1
z2

dΩ, where the domain of integration A is described by

� ≤ z ≤ h, ϕ ∈ [0, 2π].

5) The space integral
∫

A
z exp

(− (x2 + y2 + z2
))

dΩ, where the domain of integration is A = R
3.

6) The space integral
∫

A
exp
(−2x2 − 3y2 − 6z2

)
dΩ, where the domain of integration is A = R

3.

A Improper space integrals. Note that the domain of integration is described in various coordinate
systems according to the usual conventions.

D Whenever possible, sketch the projection of the domain of integration onto the XY -plane. Explain
why the space integral is improper (i.e. if the integrand is not defined in all points and/or if the
domain of integration A is unbounded). Truncate the domain: compute the space integral over
the truncated domain and finally take the limit.

I 1) The domain A is bounded. The integrand is not defined for x + y + z = 0, i.e. at the point
(0, 0, 0) ∈ A. The integrand is positive elsewhere, so we can choose the truncation

At = {(x, y, z) | x ≥ 0, y ≥ 0, t ≤ x + y ≤ 1, 0 ≤ z ≤ x + y} t ∈ ]0, 1[.

Let

Bt = {(x, y) | x ≥ 0, y ≥ 0, t ≤ x + y ≤ 1} og B = B0

denote the projection of At onto the XY -plane. Then∫
At

1√
x + y + z

dΩ =
∫

Bt

{∫ x+y

0

1√
x + y + z

dz

}
dx dy

=
∫

Bt

[
2
√

x + y + z
]x+y

z=0
dx dy = 2(

√
2 − 1)

∫
Bt

√
x + y dx dy,
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Figure 45: The truncation Bt in the XY -plane of Example 6.1.1.

which clearly has a limit for t → 0+.

Hence the improper integral exists, and its value is∫
A

1√
x + y + z

dΩ = 2(
√

2 − 1)
∫

B

√
x + y dx dy = 2(

√
2 − 1)

∫ 1

0

{∫ 1−x

0

√
x + y dy

}
dx

= 2(
√

2 − 1)
∫ 1

0

[
2
3

(x + y)
3
2

]1−x

y=0

dx =
4
3
(
√

2 − 1)
∫ 1

0

{
1 − x

3
2

}
dx

=
4
3
(
√

2 − 1) − 8
15

(
√

2 − 1)
[
x

5
2

]1
0

= (
√

2 − 1) · 12
15

=
4
5
(
√

2 − 1).

–1
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0.5
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x

Figure 46: The projection of the truncation Bt in Example 6.1.2.

2) The domain is bounded, at the integrand is positive with the exception of (0, 0, 0), where it is
not defined. We choose the truncation

At = {(x, y, z) | tt ≤ x2 + y2 ≤ z4 ≤ 1}, t ∈ ]0, 1[,

with the projection

Bt = {(x, y) | t2 ≤ x2 + y2 ≤ 1} = {(�, ϕ) | t ≤ � ≤ 1, 0 ≤ ϕ ≤ 2π}.
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Then∫
At

z3

(x2 + y2 + z4)
3
2

dΩ =
∫

Bt

{∫ 1

4
√

x2+y2

z3

x2 + y2 + z4)
3
2

dz

}
dx dy

=
∫

Bt

[
1
4
· (−2)

1√
x2 + y2 + z4

]1

z= 4
√

x2+y2

dx dy

=
1
2

∫
Bt

{
1√
2
· 1√

x2 + y2
− 1√

x2 + y2 + 1

}
dx dy

=
1
2

∫ 2π

0

{∫ 1

t

{
1√
2
· 1
�
− 1√

�2 + 1

}
� d�

}
dϕ = π

∫ 1

t

{
1√
2
− �√

�2 + 1

}
d�

= π

[
�√
2
−
√

�2 + 1
]1

t

= π

(
1√
2
−
√

2 +
√

t2 + 1 − t√
2

)
,

which is convergent for t → 0+.

The improper space integral exists, and its value is∫
A

z3

(x2 + y2 + z4)
3
2

dΩ = π

(
1√
2
−
√

2 + 1
)

=
π

2
(
√

2 − 2
√

2 + 2) =
π

2
(2 −

√
2).

3) The set A lies in the first octant, thus the integrand is defined and positive everywhere in A.
However, A is unbounded. First note that we have in spherical coordinates,

xyz = r3 sin2 θ cos θ cos ϕ sin ϕ,

which does not look too promising to put into the denominator. Note instead that we have the
following estimates in A,

1 ≤ 1 + xyz ≤ 1 + r3.

When we choose the following truncation in spherical coordinates

AR =
{

(r, θ, ϕ)
∣∣∣ 0 ≤ r ≤ R, θ ∈

[π
3

,
π

2

]
, ϕ ∈

[π
6

,
π

3

]}
, R > 0,

we get the following estimate,∫
AR

1
1 + xyz

dΩ ≥
∫ π

3

π
6

{∫ π
2

π
3

{∫ R

0

1
1 + r3

r2 sin θ dr

}
dθ

}
dϕ

=
π

6

∫ π
2

π
3

sin θ dθ ·
∫ R

0

r2

1 + r3
dr =

π

6
[− cos θ]

π
2
π
3

[
1
3

ln(1 + r2)
]R

0

=
π

36
ln(1 + R2).

Thus we conclude that

lim
R→+∞

∫
AR

1
1 + xyz

dΩ = +∞,

and the improper space integral does not exist.

 Improper space integrals
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4) The domain is bounded and the integrand is positive in A, with the exception of (0, 0, 0), where
it is not defined. Put in semi-polar coordinates,

At = {(�, ϕ, z) | t ≤ � ≤ h, ϕ ∈ [0, 2π], � ≤ z ≤ h}, 0 < t < h.

When h = 1 the projection Bt of At is the same as in Example 6.1.2.

Then we compute,∫
At

1
z2

dΩ =
∫ 2π

0

{∫ h

t

{∫ h

�

1
z2

dz

}
� d�

}
dϕ=2π

∫ h

t

[
−1

z

]h

z=�

� d�=2π

∫ h

t

(
1
�
− 1

h

)
� d�

= 2π

∫ h

t

(
1 − 1

h
�

)
d�=

[
� − �2

2h

]h

�=t

=2π

[
h − h2

2h
− t +

t2

2h

]
→ πh for t → 0 + .

Hence, the improper space integral exists and its value is given by∫
A

1
z2

dΩ = πh.

 Improper space integrals
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5) The integrand is defined all over R
3, and if the improper integral exists, then its value must

for symmetric reasons necessarily be 0.

The integrand is ≥ 0 in the upper half space. Hence we define in semi-polar coordinates the
following truncation,

AR = {(�, ϕ, z) | 0 ≤ � ≤ R, ϕ ∈ [0, 2π], 0 ≤ z ≤ R}, R > 0.

We get by integration over this set∫
AR

z exp
(−(x2 + y2 + z2)

)
dΩ =

∫ R

0

z e−z2
dz ·
∫ 2π

0

{∫ R

0

e−�2
� d�

}
dϕ

= 2π

{∫ R

0

t e−t2dt

}2

= 2π

{[
−1

2
et2
]R

0

}2

=
π

2

(
1 − e−R2

)2

,

which clearly converges for R → +∞.

Similarly the improper space integral exists over the lower half space, and the improper space
integral exists. Due the to symmetry, the value must be∫

A

z exp
(−(x2 + y2 + z2)

)
dΩ = 0.

6) The integrand is positive all over R
3, so we choose the truncation

[−a, a] × [−b, b] × [−c, c], a, b, c > 0.

After the integration over this set we shall continue by letting a, b and c tend to +∞ indepen-
dently. This procedure can be shortened by using a well-known example.

We get by the change of variables,

ξ =
√

2 x, η =
√

3 y, ζ =
√

6 z,

that∫
[−a,a]×[−b,b]×[−c,c]

exp
(−2x2 − 3y2 − 6z2

)
dΩ

=
∫ a

−a

exp(−2x2)dx ·
∫ b

−b

exp(−3y2)dy ·
∫ c

−c

exp(−6z2)dz

= 23

∫ a

0

exp(−2x2)dx ·
∫ b

0

exp(−3y2)dy ·
∫ c

0

exp(−6z2)dz

= 8· 1√
2

∫ a
√

2

0

exp(−ξ2)dξ · 1√
3

∫ b
√

3

0

exp(−η2)dη · 1√
6

∫ c
√

6

0

exp(−ζ2)dζ.

Each of the three integrals is convergent by taking the limit and the value is∫ +∞

0

exp(−t2) dt =
√

π

2
.

Hence we conclude that the improper space integral is convergent and its value is∫
R3

exp(−2x2 − 3y2 − 6z2)dΩ = 8 · 1√
2
· 1√

3
· 1√

6
·
(√

π

2

)3

=
π
√

π

6
.
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Example 6.2 In each of the following cases is given a space integral including a parameter α ∈ R.
The integral is improper for some or all values of the parameter α.
Let MC and MD = R \ MC be sets of numbers such that the integral is convergent (or proper) for
α ∈ MC and divergent for α ∈ MC . Find in each of the following cases MC and MD as well as the
value of the integral for α ∈ MC .

1) The space integral
∫

A
(x2+y2+z2)−αdΩ, where the domain of integration A is given by x2+y2+z2 ≤

1.

2) The space integral
∫

A
(x2+y2+z2)−αdΩ, where the domain of integration A is given by x2+y2+z2 ≥

1.

3) The space integral
∫

A
|z| exp

(−α(x2 + y2 + z2)
)
dΩ, where the domain of integration is given by

A = R
3.

4) The space integral
∫

A

{
z + exp

(−α(x2 + y2 + z2)
)}

dΩ, where the domain of integration is given
by A = R

3.

5) The space integral
∫

A(α)

1
x2 + y2

dΩ, where the domain of integration A(α) is described by

z|α| ≤ x2 + y2 ≤ 1, 0 ≤ z ≤ 1.

A Improper space integrals with a parameter.

D Describe why the space integral is improper. Analyze and compute the space integral based on the
classification.

I 1) The domain of integration A is the closed unit ball. The integrand is positive in A \ {(0, 0, 0)},
and it is not defined at the point (0, 0, 0).

The formulation gives of hint of an application of spherical coordinates. We choose the trun-
cation

AR = {(r, θ, ϕ) | R ≤ r ≤ 1, θ ∈ [0, π], ϕ ∈ [0, 2π]}, 0 < R < 1,

i.e. we remove a small ball of radius R from A. When we integrate over AR we get∫
AR

(x2 + y2 + z2)−αdΩ =
∫ 2π

0

{∫ π

0

{∫ 1

R

r−2α · r2 sin θ dr

}
dθ

}
dϕ

= 2π · [− cos θ]π0 ·
∫ 1

R

r2(1−α)dr = 4π

∫ 1

R

r2(1−α)dr.

It is well-known that the limit exists for R → 0+, if and only if 2(1− α) > −1, i.e. if and only

if α <
3
2
. Hence,

MC =
{

α

∣∣∣∣ α <
3
2

}
og MD =

{
α

∣∣∣∣ α ≥ 3
2

}
.

If α ∈ MC , i.e. if α <
3
2
, we get the value of the integral by taking the limit,

∫
A

(x2 + y2 + z2)−αdΩ = lim
R→0+

4π

∫ 1

R

r2(1−α)dr = 4π

[
r3−2α

3 − 2α

]1
0

=
4π

3 − 2α
.
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2) The integrand is the same as in 1). The domain of integration, however, has been replaced by
the complementary set of the unit ball. The integrand is defined and continuous everywhere
in the unbounded set A. We choose the truncation

AR = {(r, θ, ϕ) | 1 ≤ r ≤ R, θ ∈ [0, π], ϕ ∈ [0, 2π]}, R > 1.

Using the same computation as in 1), i.e. first integrate with respect to θ and ϕ, then

∫
AR

(x2 + y2 + z2)−αdΩ = 4π

∫ R

1

r2(1−α)dr.

The limit exists for R → +∞, if and only if 2(1− α) < −1, i.e. if and only if α >
3
2
. It follows

that

MC =
{

α

∣∣∣∣ α >
3
2

}
og MD =

{
α

∣∣∣∣ α ≤ 3
2

}
.

Let α ∈ MC , i.e. α >
3
2
. Then we get

∫
A

(x2 + y2 + z2)−αdΩ = lim
R→+∞

4π

∫ R

1

r2(1−α)dr = lim
R→+∞

4π

[
−r−(2α−3)

2α − 3

]R

1

=
4π

2α − 3
.

3) The space integral clearly does not exist when α ≤ 0, because the integrand then tends “uni-
formly” towards +∞ for e.g. |z| ≥ 1. Thus,

MD ⊇ {α | α ≤ 0}.

Then let α > 0. The integrand is ≥ 0 in R
3, so we put in semi-polar coordinates [cf. Exam-

ple 6.1.5],

AR = {(�, ϕ, z) | 0 ≤ � ≤ R, ϕ ∈ [0, 2π], −R ≤ z ≤ R}, R > 0.

When we integrate over AR, we get∫
AR

|z| exp
(−α(x2 + y2 + z2)

)
dΩ =

∫ 2π

0

{∫ R

0

{
2
∫ R

0

z exp
(−α(�2 + z2)

)
dz

}
� d�

}
dϕ

= 2 · 2π

∫ R

0

e−α�2
� d� ·

∫ R

0

e−αz2
z dz = π

{∫ R

0

e−αt2 · 2t dt

}2

= π

⎧⎨
⎩
[
−e−αt2

α

]R

0

⎫⎬
⎭

2

=
π

α2

(
1 − e−αR2

)2

,

which clearly converges for R → +∞, because α > 0. We conclude that

MC = {α | α > 0} and MD = {α | α ≤ 0}.

Let α ∈ MC , i.e. α > 0. Then∫
A

|z| exp
(−α(x2 + y2 + z2)

)
dΩ = lim

R→+∞
π

α2

(
1 − e−αR2

)2

=
π

α2
.
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4) The space integral is divergent for every α ∈ R, i.e. MC = ∅ and MD = R. One may in
semi-polar coordinates put

AR = {(�, ϕ, z) | 0 ≤ � ≤ R, ϕ ∈ [0, 2π], 0 ≤ z ≤ R}, R > 0.

Then∫
AR

{
z + exp(−α(x2 + y2 + z2))

}
dΩ ≥

∫
AR

z dΩ = πR2

∫ R

0

z dz =
π

2
R4,

which clearly goes to +∞ for R → +∞.

5) The set A(α) is bounded, and the integrand is not defined at (0, 0, 0). The integrand is positive
in the remaining part of the domain of integration.

Consider for a fixed R ∈ ]0, 1[ (in semi-polar coordinates) the truncated domain

AR =
{

{(�, ϕ, z) | R ≤ � ≤ 1, ϕ ∈ [0, 2π], 0 ≤ z ≤ �
2

|α| }, α �= 0,
{(�, ϕ, z) | � = 1, ϕ ∈ [0, 2π], 0 ≤ z ≤ 1}, α = 0.
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a) If α = 0, then (0, 0, 0) does not belong to A(0), and A(0) is a cylindric surface. A space
integral over a smooth surface is 0. We therefore conclude that 0 ∈ MC and∫

A(0)

1
x2 + y2

dΩ = 0.

b) If α �= 0, we get by integration over the truncated domain that∫
AR

1
x2 + y2

dΩ =
∫ 2π

0

{∫ 1

R

1
�2

{∫ �2/|α|

0

dz

}
� d�

}
dϕ

= 2π

∫ 1

R

�2/|α|−1dz d� = 2π

[ |α|
2

�2/|α|
]1

R

= π|α|
{

1 − R2/|α|
}

.

From
2
|α| > 0 follows that this expression converges for R → 0+, thus α ∈ MC , and

(2)
∫

A(α)

1
x2 + y2

dΩ = π|α| for α �= 0.

By comparison of the two cases above we see that (2) is also valid for α = 0, hence

MC = R and MD = ∅,

and∫
A(α)

1
x2 + y2

dΩ = π|α| for α ∈ MC = R.

Example 6.3 When we rotate the meridian curve M given by the parametric description

� = a cos t, z = a{ln(1 + sin t) − ln cos t − sin t}, t ∈
[
0,

π

2

[
,

we obtain a surface of revolution (half of the pseudosphere), which together with a disc in the XY -plane
bound a body of revolution Ω. Both M and Ω go to infinity along the positive part of the Z-axis.

Find
dz

dt
, and set up an expression by an integral for the volume oft that part of Ω, which corresponds

to t ∈ [0, T ], where T <
π

2
.

Then find the volume of Ω by letting T → π

2
.

A Volume of an infinite body of revolution; improper space integral.

D Sketch the meridian curve. Then follow the guidelines.

I First calculate

dz

dt
= a

{
cos t

1 + sin t
+

sin t

cos t
− cos t

}
= a

{
cos t(1 − sin t)

1 − sin2 t
+

sin t

cos t
− cos t

}

= a

{
1 − sin t + sin t

cos t
− cos t

}
= a · 1 − cos2 t

cos t
= a

sin2 t

cos t
.
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Figure 47: The meridian curve M in the PZ half plane.

Let ΩT be that part of the body of revolution which corresponds to t ∈ [0, T ] by the parametric
description. The plane z = z(t), t ∈ [0, T ], cuts a disc out of the body of revolution of the area
πa2 cos2 t, thus

vol(ΩT ) =
∫ T

0

πa2 cos2 t · dz

dt
dt = πa3

∫ T

0

cos2 · sin
2 t

cos t
dt

= πa3

∫ T

0

sin2 t cos t dt =
πa3

3
[
sin3 t

]T
0

=
πa3

3
sin3 T.

The volume of “half” of the pseudosphere is then found by taking the limit,

vol(Ω) = lim
T→π

2 −
vol(ΩT ) =

πa3

3
.

Example 6.4 There is given a curve K in the (x, y)-plane of the equation

y2(a − x) = x3.

1) Show that the curve lies in the strip [0, a] × R, and that the line x = a is an asymptote for K.
Sketch K.

2) By revolving K with the asymptote as axis we get a body of revolution Ω, which stretches into

infinity. Prove that Ω has the volume
1
4

π2a3.

A A body of revolution given by a meridian curve; improper space integral.

D Follow the guideline.

I 1) Clearly, the curve is symmetric with respect to the X-axis, and x = 0 for y = 0. If x ∈ [0, a[,
then

y2 =
x2

a − x
, i.e. y = ±x

√
x

a − x
,
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Figure 48: The curve K.

because
x

a − x
> 0.

If x → a−, then |y| → +∞, thus x = a is an asymptote.

If x = a we have no solution (y2 · 0 �= a3).
If x > a, then a − x < 0 and x3 > 0. There is no solution, because y2 ≥ 0.
Similarly, a − x > 0 and x3 < 0, when x < 0, so there in no solution here either, and we have
proved 1).

2) Let x ∈ [0, a[. Of symmetric reasons it suffices to consider y ≥ 0, i.e.

y = x

√
x

a − x
=

√
x3

a − x
= x

3
2 (a − x)−

1
2 .

Then

dy

dx
=

3
2

x
1
2 (a−x)−

1
2 +

1
2

x
3
2 (a−x)−

3
2 =

1
2

x
1
2

(a − x)
3
2
{3(a−x)+x} =

1
2

√
x

(a − x)3
· (3a−2x).

The area of the circle of rotation Cx (with respect to the line x = a) at the height y(x) is
π(x − a)2. If we truncate at the height y(x0) corresponding to some x0 ∈ [0, a[, we get the
corresponding volume (notice the symmetry with respect to y = 0)

2
∫ x0

0

area(Cx) · dy

dx
dx = 2

∫ x0

0

π(x − a)2 · 1
2

√
x

(a − x)3
· (3a − 2x) dx

= π

∫ x0

0

√
x(a − x) · (3a − 2x) dx.

We have clearly convergency for x0 → a−, thus the total volume is by the change of variable
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t = x − a

2
given by

π

∫ a

0

√
x(a − x) · (3a − 2x) dx = π

∫ a

0

√(a

2

)2

−
(
x − a

2

)2

·
{

2a − 2
(
x − a

2

)}
dx

= π

∫ a
q 2

− a
2

√(a

2

)
− t2 · {2a − 2t}dt = 2πa

∫ a
2

− a
2

√(a

2

)2

− t2 dt + 0

= 2πa · 1
2

π
(a

2

)2

=
π2a3

4
,

because it again follows by the symmetry (the integrand is an odd function) that

−π

∫ a
2

− a
2

√(a

2

)2

− t2 · 2t dt = 0.

Finally,

∫ a
2

− a
2

√(a

2

)2

− t2 dt =
1
2

π
(a

2

)2

is the area of the half disc in the upper half plane of radius
a

2
and centrum

(a

2
, 0
)
.
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Example 6.5 Given in the meridian half plane a curve of the equation

� =
a3

a2 + z2
, z ∈ R.

The curve is rotated around the vertical Z-axis, and we get a body of revolution Ω, which stretches

into infinity. Prove that Ω has the volume
π2a3

2
.

A Volume of an infinite body of revolution; improper space integral.

D Sketch the meridian curve. Set up the improper space integral and compute by first truncate to a
bounded domain.

–3

–2

–1

0

1

2

3

y

0.4 0.8 1.2

x

Figure 49: The meridian curve in the PZ half plane.

I The curve is clearly symmetric about the P -axis, and it suffices to consider z ≥ 0.

The slicing method. We cut a disc C(z) out of the body of revolution of radius � at the height
z. Then

area(C(z)) = π�(z)2 =
πa6

(a2 + z2)2
.

Define the truncation Ωk by

Ωk = {(x, y, z) ∈ Ω | |z| ≤ ka}, k > 0.

Then by integration over Ωk,

vol(Ωk) = 2
∫ ka

0

area(C(z)) dz = 2πa6

∫ ka

0

1
(a2 + z2)2

dz = 2πa3

∫ k

0

dt

(1 + t2)2
,

which clearly is convergent for k → +∞. The improper integral exists, and we get by the substi-
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tution t = tan u,

vol(Ω) = 2πa3

∫ +∞

0

1
(1 + t2)2

dt = 2πa3

∫ π
2

0

1
(1 + tan2 u)2

(1 + tan2 u) du

= 2πa3

∫ π
2

0

1
1 + tan2 u

du = 2πa3

∫ π
2

0

cos2 u du

= 2πa3 · 1
2

∫ π
2

0

(cos2 u + sin2 u) du = πa3 · π

2
=

π2a3

2
.

Example 6.6 Let A be the infinite half cylinder, which in semi-polar coordinates is bounded in the
following way

0 ≤ z < +∞, 0 ≤ � ≤ a, 0 ≤ ϕ ≤ 2π.

Prove that the improper space integral∫
A

z2(a − x)
{(a − z)2 + y2 + z2}2 dΩ

is convergent, and find its value.

A Improper space integral in semi-polar coordinates.

D Find the possible points where the integrand is not defined and truncate around them as well as
truncate infinity. Apparently, the computations are “easiest” in rectangular coordinates.

I The integrand is not defined at the point (a, 0, 0), and it is positive elsewhere in A\ (a, 0, 0). Choose
the truncation

Aε,T = {(�, ϕ, z) | 0 ≤ � ≤ a, ϕ ∈ [0, 2π], ε ≤ z ≤ T}, 0 < ε < T < +∞.

Denote the projection of A and Aε,T onto the XY -plane by B, thus

B = {(x, y) | x2 + y2 ≤ a2} = {(�, ϕ) | 0 ≤ � ≤ a, ϕ ∈ [0, 2π]}.
By reduction of the space integral over Aε,T we get∫

Aε,T

z2(a − x)
{(a − z)2 + y2 + z2}2 dΩ =

∫ T

ε

z2

{∫
B

a − x

{(a − x)2 + y2 + z2}2 dx dy

}
dz.

For every fixed z ∈ [ε, T ],

∫
B

a − x

{(a − x)2 + y2 + z2}2 dx dy =
∫ a

−a

{∫ √
a2−y2

−
√

a2−y2

a − x

{(a − x)2 + y2 + z2}2 dx

}
dy

= 2
∫ a

0

[
+

1
2
· 1
(a − x)2 + y2 + z2

]√a2−y2

x=−
√

a2−y2

dy

=
∫ a

0

{
1

(a −
√

a2 − y2)2 + y2 + z2
− 1

(a +
√

a2 − y2)2 + y2 + z2

}
dy

=
∫ a

0

{
1

2a2 − 2a
√

a2 − y2 + z2
− 1

2a2 + 2a
√

a2 − y2 + z2

}
dy,
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hence by insertion and interchanging the order of integration,∫
Aε,T

z2(a − x)
{(a − x)2 + y2 + z2}2 dΩ

=
∫ T

ε

{∫ a

0

{
z2

2a2−2a
√

a2−y2+z2
− z2

2a2+2a
√

a2−y2

}
dy

}
dz

=
∫ a

0

{∫ T

ε

{
(2a2 −2a

√
a2−y2+z2)−(2a2−2a

√
a2 −y2)

2a2 + z2 − 2a
√

a2 − y2

− (2a2+2a
√

a2−y2+z2)−(2a2+2a
√

a2−y2)

2a2 + z2 + 2a
√

a2 − y2

}
dz

}
dy

=
∫ a

0

{∫ T

ε

2a2 + 2a
√

a2 − y2

2a2 + 2a
√

a2 − y2 + z2
dz

}
dy −

∫ a

0

{∫ T

ε

2a2 − 2a
√

a2 − y2

2a2 − 2a
√

a2 − y2 + z2
dz

}
dy

=
∫ a

0

⎡
⎣√2a2+2a

√
a2−y2 Arctan

⎛
⎝ z√

2a2+2a
√

a2−y2

⎞
⎠
⎤
⎦

T

z=ε

dy

−
∫ a

0

⎡
⎣√2a2−2a

√
a2−y2 Arctan

⎛
⎝ z√

2a2−2a
√

a2−y2

⎞
⎠
⎤
⎦

T

z=ε

dy.

For fixed y > 0 (in fact also for “y = 0”) the sum of the integrands converges for ε → 0+ and
T → +∞ towards

π

2

{√
2a2 + 2a

√
a2 − y2 −

√
2a2 − 2a

√
a2 − y2

}
,

thus we get by these limits and the substitution y = a sin t, t ∈
[
0,

π

2

]
, that the improper space

integral is convergent with the value∫
A

z2(a − x)
{(a − x)2 + y2 + z2}2 dΩ

= lim
δ→0+

∫ π
2

δ

π

2

{√
2a2+2a2 cos t−

√
2a2−2a2 cos t

}
· a cos t dt

=
π

2

√
2 · a2

∫ π
2

0

{√
1 + cos t −√

1 − cos t
}

cos t dt

= πa2

∫ π
2

0

{
cos

t

2
− sin

t

2

}(
cos2

t

2
− sin2 t

2

)
dt

= πa2

∫ π
2

0

(
1 − 2 sin2 t

2

)
cos

t

2
dt − πa2

∫ π
2

0

(
2 cos2

t

2
− 1
)

sin
t

2
dt

= πa2 · 2
[
sin

t

2
− 2

3
sin3 t

2

]π
2

0

− πa2 · 2
[
−2

3
cos3

t

2
+ cos

t

2

]π
2

0

= 2πa2

{
1√
2
− 2

3
· 1
2
√

2
+

2
3
· 1
2
√

2
− 1√

2
− 2

3
+ 1
}

=
2πa2

3
.
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Example 6.7 It is well-known that we by considering the improper plane integral∫
R2

exp
(−x2 − y2

)
dS

can derive the formula∫ ∞

−∞
exp
(−u2

)
du =

√
π.

1) Find the integral∫ ∞

−∞
exp
(
−u2

a

)
du.

2) Find by considering the improper space integral∫
R3

exp
(−x2 − y2 − z2

)
dΩ,

the integral∫ ∞

−∞
u2 exp

(
−u2

a

)
du.

3) Let p be a constant in the interval ] − 1, 1[. Compute the plane integral∫
R2

exp
(
−x2 − 2pxy + y2

2(1 − p2)

)
dS

by first integration over the parallelogram B(T ) with the vertices

(−T − pT,−T ), (T − pT,−T ), (T + pT, T ), (−T + pT, T ),

and then by putting x = py + t.

4) Prove that the improper plane integral∫
R2

xy exp
(
−x2 − 2py + y2

2(1 − p2)

)
dS

is convergent. Then find its value by using the same method as in the previous question.

A Improper space and plane integrals.

D Either follow the given guidelines, or (which is possible here) design an alternative.

I First notice that if we put

BR = {(x, y) | x2 + y2 ≤ R2},
then we get by using polar coordinates,∫

BR

exp
(−x2 − y2

)
dS = 2π

∫ R

0

exp
(−�2

)
� d� = π

{
1 − exp

(−R2
)}

.
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The integrand is positive, hence by taking the limit R → +∞,∫
R2

exp
(−x2 − y2

)
dS = lim

R→+∞

∫
BR

exp
(−x2 − y2

)
dS = π,

thus

π =
∫

R2
exp
(−x2 − y2

)
dS =

{∫
R

exp
(−x2

)
dx

}{∫
R

exp
(−y2

)
dy

}
=
{∫ +∞

−∞
exp
(−u2

)
du

}2

,

and we get

(3)
∫ +∞

−∞
exp
(−u2

)
du =

√
π.
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1) It follows from (3) with u =
t√
a

that

√
π =

∫ +∞

−∞
exp
(−u2

)
du =

∫ +∞

−∞
exp
(
− t2

a

)
1√
a

dt,

hence∫ +∞

−∞
exp
(
−u2

a

)
du =

√
aπ.

2) Then by a partial integration and an application of the result of 1),∫ +∞

−∞
u2 exp

(
−u2

a

)
du =

a

2

∫ +∞

−∞
u · 2 u

a
· exp

(
−u2

a

)
du

=
a

2

[
−u exp

(
−u2

a

)]+∞

−∞
+

a

2

∫ +∞

−∞
exp
(
−u2

a

)
du =

1
2

a
√

2π.

Alternatively put ΩR = {(x, y, z) | x2 + y2 + z2 ≤ R2}. Then∫
ΩR

exp
(−x2−y2−z2

)
dΩ =

∫ 2π

0

{∫ π

0

{∫ R

0

exp
(−r2
)
r2 sin θ dr

}
dθ

}
dϕ

= 2π · 2
∫ R

0

r2 exp
(−r2

)
dr,

hence

π
√

π =
{∫ +∞

−∞
exp
(−u2

)
du

}3

=
∫

R3
exp
(−x2 − y2 − z2

)
dΩ

= lim
R→+∞

∫
ΩR

exp
(−x2 − y2 − z2

)
dΩ

= 4π

∫ +∞

0

r2 exp
(−r2

)
dr = 2π

∫ +∞

−∞
u2 exp

(−u2
)

du,

and thence∫ +∞

−∞
u2 exp

(−u2
)

du =
√

π

2
.

Then we get by the change of variable u → u√
a
,

∫ +∞

−∞

u2

a
exp
(
−u2

a

)
· 1√

a
du =

√
π

2
,

i.e. ∫ +∞

−∞
u2 exp

(
−u2

a

)
du =

1
2

a
√

aπ.
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Figure 50: The domain B(T ) for T = 2 and p =
1
2

3) Since the integrand is positive we do not have to consider the parallelogram B(T ). It is actually
possible directly to use the change of variables

(x, y) = (py + t, y).

Nevertheless, we shall here stick to the analysis of B(T ).

The parallelogram is described by −T + py ≤ x ≤ T + py, y ∈ [−T, T ]. If we put x = py + t,
we get the conditions

t ∈ [−T, T ] and y ∈ [−T, T ], i.e. (t, y) ∈ [−T, T ] × [−T, T ].

Furthermore,

x2 − 2pxy + y2 = (x2 − 2pxy + p2y2) + (1 − p2)y2

= (x − py)2 + (1 − p2)y2 = t2 + (1 − p2)y2.

Finally, the corresponding Jacobian is given by∣∣∣∣∣∣∣∣∣

∂x

∂t

∂x

∂y

∂y

∂t

∂y

∂y

∣∣∣∣∣∣∣∣∣
=
∣∣∣∣ 1 p

0 1

∣∣∣∣ = 1 · 1 − p · 0 = 1,

thus∫
B(T )

exp
(
−x2 − 2pxy + y2

2(1 − p2)

)
dS =

∫
[−T,T ]×[−T,T ]

exp
(
− t2

2(1 − p2)
− y2

2

)
dt dy

=
∫ T

−T

exp
(
− t2

2(1 − p2)

)
dt ·
∫ T

−T

exp
(
−y2

2

)
dy.

It follows from 1) by taking the limit T → +∞ and choosing a = 2(1−p2) and a = 2 respectively
that∫

R2
exp
(
−x2 − 2pxy + y2

2(1 − p2)

)
dS =

√
2(1 − p2)π ·

√
2π = 2π

√
1 − p2.
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4) Now p ∈ ] − 1, 1[, so

x2 − 2pxy + y2 = (x − py)2 + (1 − p2)y2 = (1 − p2)x2 + (y − px)2,

and it then follows by the rules of magnitudes that the integral is convergent.

Finally, by the method of 3),∫
B(T )

xy exp
(
−x2 − 2pxy + y2

2(1 − p2)

)
dS =

∫
[−T,T ]2

(py + t)y exp
(
− t2

2(1 − p2)
− y2

2

)
dt dy

= p

∫ T

−T

exp
(
− t2

2(1 − p2)

)
dt ·
∫ T

−T

y2 exp
(
−y2

2

)
dy + 0,

because e.g. y exp
(
−y2

2

)
is odd. Then by the limit T → +∞ and an application of the

previous results we end up with∫
R2

xy exp
(
−x2 − 2pxy + y2

2(1 − p2)

)
dS = p

∫ +∞

−∞
exp
(
− t2

2(1 − p2)

)
dt ·
∫ +∞

−∞
y2 exp

(
−y2

2

)
dy

= p
√

2π(1 − p2) · 2
2

√
2π = 2πp

√
1 − p2.

Example 6.8 Check if the improper space integral∫
R3

z

c2 + x2 + y2 + z2
dΩ

is convergent or divergent. In case of convergency, find its value.

A Improper space integral.

D Consider the space integral in the domain where the integrand is positive.

We see by inspection that the degree of the denominator is only 1 bigger than the degree of the
numerator. Therefore, a qualified guess is of course that the integral is divergent.

I Let us prove this in the traditional way. First note that the integrand is ≥ 0 for z ≥ 0. Let Ω(R)
denote the half ball in the upper half space z ≥ 0 of centrum 0 and radius R. Then we get in
spherical coordinates that

∫
Ω(R)

z

c2 + x2 + y2 + z2
dΩ =

∫ π
2

0

{∫ 2π

0

(∫ R

0

r cos θ

c2 + r2
· r2 sin θ dr

)
dϕ

}
dθ

= 2π

[
sin2 θ

2

]π
2

0

∫ R

0

r3

c2 + r2
dr = π

∫ R

0

(
r − c2 · r

c2 + r2

)
dr

= π

[
1
2

r2 − c2

2
ln
(
c2 + r2

)]R

0

=
π

2
{
R2 − c2 ln(c2 + R2) + 2c2 ln c

}
→ +∞ for R → +∞,

and the improper space integral is divergent as claimed above.
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7 Transformation of space integrals

Example 7.1 Let A denote the tetrahedron, which is bounded by the four planes of the equations

x + y = 1, y + z = 1, z + x = 1, x + y + z = 1.

Compute the space integral

I =
∫

A

(x + y)(y + z) dx dy dz

by introducing the new variables

u = 1 − x − y, v = 1 − y − z, w = 1 − z − x.

A Transformation of a space integral.

Find the Jacobian and the limits of u, v and w.

 Transformation of space integrals
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I We derive from

dx dy dz =
∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣ du dv dw =
∣∣∣∣∂(u, v, w)
∂(x, y, z)

∣∣∣∣
−1

du dv dw

and

∂(u, v, w)
∂(x, y, z)

=

∣∣∣∣∣∣
−1 −1 0

0 −1 −1
−1 0 −1

∣∣∣∣∣∣ = −1−1+0−0−0−0 = −2

that the weight function is∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣ =
∣∣∣∣∂(u, v, w)
∂(x, y, z)

∣∣∣∣
−1

=
1
2
.

The integrand is

(x + y)(y + z) = (1 − u)(1 − v).

Considering the limits of u, v and w we see that

x + y = 1 corresponds to u = 1 − x − y = 0,
y + z = 1 corresponds to v = 1 − y − z = 0,
z + x = 1 corresponds to w = 1 − z − x = 0.

From

u + v + w = 3 − 2(x + y + z),

follows that

x + y + z = 1 corresponds to u + v + w = 1.

Finally, the tetrahedron lies in the first octant of the XY Z-space, where x + y ≤ 1, y + z ≤ 1 and
z + x ≤ 1. Hence the domain in the UV W -space is

B = {(u, v, w) | u ≥ 0, v ≥ 0, w ≥ 0, u + v + w ≤ 1}
= {(u, v, w) | 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 − u, 0 ≤ w ≤ 1 − u − v}.
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By this transformation followed by a reduction in rectangular coordinates we get

I =
∫

A

(x + y)(y + z) dx dy dz =
∫

B

(1 − u)(1 − v) · 1
2

du dv dw

=
1
2

∫ 1

0

(1 − u)
{∫ 1−u

0

(1 − v)
{∫ 1−u−v

0

dw

}
dv

}
du

=
1
2

∫ 1

0

(1 − u)
{∫ 1−u

0

(1 − v)(1 − u − v)dv

}
du

=
1
2

∫ 1

0

(1 − u)
{∫ 1−u

0

{
(v − 1)2 + u(v − 1)

}
dv

}
du

=
1
2

∫ 1

0

(1 − u)
[
1
3

(v − 1)3 +
u

2
(v − 1)2

]1−u

0

du

=
1
2

∫ 1

0

(1 − u)
{

1
3
− 1

3
u23 +

u

2
· u2 − u

2

}
du

=
1
2

∫ 1

0

(1 − u)
{

1
3

+
1
6

u3 − u

2

}
du =

1
12

∫ 1

0

(1 − u)(2 + u3 − 3u) du

=
1
12

∫ 1

0

{
2 + u3 − 3u − 2u − u4 + 3u2

}
du =

1
12

{
2 +

1
4
− 3

2
− 2

2
− 1

5
+

3
3

}

=
1
12

· 1
30

(60 + 15 − 45 − 6) =
1
12

· 1
30

· 24 =
1
15

.

 Transformation of space integrals

Dedicated Analytical Solutions
FOSS
Slangerupgade 69
3400 Hillerød
Tel. +45 70103370

www.foss.dk

The Family owned FOSS group is 

the world leader as supplier of 

dedicated, high-tech analytical 

solutions which measure and 

control the quality and produc-

tion of agricultural, food, phar-

maceutical and chemical produ-

cts. Main activities are initiated 

from Denmark, Sweden and USA 

with headquarters domiciled in 

Hillerød, DK. The products are 

marketed globally by 23 sales 

companies and an extensive net 

of distributors. In line with 

the corevalue to be ‘First’, the 

company intends to expand 

its market position.

Employees at FOSS Analytical A/S are living proof of the company value - First - using 
new inventions to make dedicated solutions for our customers. With sharp minds and 
cross functional teamwork, we constantly strive to develop new unique products - 
Would you like to join our team?

FOSS works diligently with innovation and development as basis for its growth. It is 
reflected in the fact that more than 200 of the 1200 employees in FOSS work with Re-
search & Development in Scandinavia and USA. Engineers at FOSS work in production, 
development and marketing, within a wide range of different fields, i.e. Chemistry, 
Electronics, Mechanics, Software, Optics, Microbiology, Chemometrics.

Sharp Minds - Bright Ideas!

We offer
A challenging job in an international and innovative company that is leading in its field. You will get the 
opportunity to work with the most advanced technology together with highly skilled colleagues. 

Read more about FOSS at www.foss.dk - or go directly to our student site www.foss.dk/sharpminds where 
you can learn more about your possibilities of working together with us on projects, your thesis etc.

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

http://bookboon.com/count/pdf/346354/101


Download free books at BookBooN.com

Calculus 2c-6

 

102  

Example 7.2 Let A be the closed point set in R
3, which is bounded by the four elliptic paraboloids of

the equations

(1) z =
3
2
− 1

6
x2 − 2

3
y2

(2) z =
1
2
− 1

2
x2 − 2y2,

(3) z = −1 +
1
4

x2 + y2,

(4) z = −2 +
1
8

x2 +
1
2

y2.

The point set A intersects the ZX-plane in a point set B1, and the Y Z-plane in a point set B2.

1) Sketch B1 and B2.

2) Compute the volume Vol(A) and the space integral

I =
∫

A

1√
x2 + 4y2 + z2

dx dy dz

by introducing the new variables (u, v, w), such that

x =
√

uv cos w, y =
1
2
√

uv sinw, z =
1
2

(u − v),

where

u, v ∈ [0,+∞[, w ∈ [0, 2π].

A Transformation of a space integral.

D First sketch B1 (put y = 0) and B2 (put x = 0). Then apply the transformation formula, i.e.
compute the weight function and change variables.

–2

–1

0

1

2

y

–4 –3 –2 –1 1 2 3 4

x

Figure 51: The set B1 is the union of the two “skew” quadrilateral sets.
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–2

–1

0

1

2

y

–4 –3 –2 –1 1 2 3 4

x

Figure 52: The set B2 is the union of the two “skew” quadrilateral sets.

I 1) By putting y = 0, we get in the XZ-plane the four parabolas

z =
3
2
− 1

6
x2, z =

1
2
− 1

2
x2, z = −1 +

1
4

x2, z = −2 +
1
8

x2,

and it is easy to sketch B1.

By putting x = 0, we get in the Y Z-plane

z =
3
2
− 2

3
y2, z =

1
2
− 2y2, z = −1 + y2, z = −2 +

1
2

y2,

and it is easy to sketch B2.

2) Let

x =
√

uv cos w, y =
1
2
√

uv sinw, z =
1
2

(u − v),

where u, v ≥ 0 and w ∈ [0, 2π]. We shall first find the image of A by this transformation.

a) By insertion into the boundary surface

z =
3
2
− 1

6
x2 − 2

3
y2

we get

1
2

(u − v) =
3
2
− 1

6
uv cos2 w − 1

6
uv sin2 w =

3
2
− 1

6
uv,

thus 3(u − v) = 9 − uv, which is reformulated as

uv + 3u = u(v + 3) = 9 + 3v = 3(v + 3).

It follows from v ≥ 0 that u = 3, hence this boundary surface is mapped into a part of the
plane u = 3.

 Transformation of space integrals
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b) By insertion into the boundary surface

z =
1
2
− 1

2
x2 − 2y2

we get

1
2

(u − v) =
1
2
− 1

2
uv cos2 w − 1

2
uv sin2 w =

1
2
− 1

2
uv,

i.e. u − v = 1 − uv, and thus

uv + u = u(v + 1) = v + 1.

From v ≥ 0 follows that u = 1, hence the boundary surface is mapped into a part of the
plane u = 1.

c) We get by insertion into the boundary surface

z = −1 +
1
4

x2 + y2

that

1
2

(u − v) = −1 +
1
4

uv cos2 w +
1
4

uv sin2 w = −1 +
1
4

uv,

thus 2(u − 2) = uv − 4, and hence

uv + 2v = v(u + 2) = 2u + 4 = 2(u + 2).

It follows from u ≥ 0 that v = 2, so the boundary surface is mapped into a part of the plane
v = 2.

d) We get by insertion into the boundary surface

z = −2 +
1
8

x2 +
1
2

y2

that

1
2

(u − v) = −2 +
1
8

uv cos2 w +
1
8

uv sin2 w = −2 +
1
8

uv,

thus 4(u − v) = −16 + uv, and hence

uv + 4v = v(u + 4) = 4u + 16 = 4(u + 4).

It follows from u ≥ 0 that v = 4, so the boundary surface is mapped into a part of the plane
v = 4.

The only condition on w is that (cos w, sin w) shall encircle the unit circle only once, so w ∈
[0, 2π].

By the transformation A is mapped onto the set

B = [1, 3] × [2, 4] × [0, 2π].

 Transformation of space integrals
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Then we calculate the Jacobian (for u, v > 0)

∂(x, y, z)
∂(u, v, w)

=

∣∣∣∣∣∣∣∣∣∣∣

1
2

√
v

u
cos w

1
2

√
u

v
cos w −√

uv sinw

1
4

√
v

u
sinw

1
4

√
u

v
sinw

1
2
√

uv cos w

1
2

−1
2

0

∣∣∣∣∣∣∣∣∣∣∣

=
1
2
· 1
4
· 1
2
√

uv

∣∣∣∣∣∣∣∣∣∣

√
v

u
cos w

√
u

v
cos w −2 sin w√

v

u
sin w

√
u

v
sinw 2 cos w

1 −1 0

∣∣∣∣∣∣∣∣∣∣

=
1
16

√
uv · 2

∣∣∣∣∣∣∣∣∣∣

√
v

u
cos w

(√
u

v
+
√

v

u

)
cos w − sin w√

v

u
sinw

(√
u

v
+
√

v

u

)
sin w cos w

1 0 0

∣∣∣∣∣∣∣∣∣∣
=

1
8
√

uv

(√
u

v
+
√

v

u

) ∣∣∣∣ cos w − sin w
sinw cos w

∣∣∣∣ = 1
8

(u + v) > 0.

We get by the transformation formula,

Vol(A) =
∫

A

dx dy dz =
∫

B

∂(x, y, z)
∂(u, v, w)

du dv dw =
∫ 2π

0

{∫ 4

2

{∫ 3

1

1
8

(u + v) du

}
dv

}
dw

=
1
8
· 2π

∫ 4

2

[
u2

2
+ uv

]3
u=1

dv =
π

8

∫ 4

2

{9 + 6v − 1 − 2v}dv

=
π

8

∫ 4

2

{4v + 8}dv =
π

8
[
2v2 + 8v

]4
2

=
π

4
[
v2 + 4v

]4
2

=
π

4
{16 + 16 − 4 − 8} = π{4 + 4 − 1 − 2} = 5π.

Let us turn to the space integral. Since

x2 + 4y2 + z2 = uv cos2 w + uv sin2 w +
1
4

(u − v)2 =
1
4
{
(u − v)2 + 4uv

}
=

1
4

(u + v)2,

and u + v > 0, the integrand is transformed into

1√
x2 + 4y2 + z2

=
2

u + v
.

Finally, by the transformation formula,∫
A

1√
x2 + 4y2 + z2

dx dy dz =
∫

B

1
u + v

· ∂(x, y, z)
∂(u, v, w)

du dv dw

=
∫

B

2
u + v

· u + v

8
du dv dw =

1
4

∫
B

du dv dw =
1
4

Vol(B)

=
1
4
· 2 · 2 · 2π = 2π.
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Example 7.3 We can write the formula of transformation of a space integral in the following way,∫
Ω̃

f(x̃) dΩ̃ =
∫

Ω

f(x̃(x)) |J(x)| dΩ,

where J is the determinant of that matrix, the elements of which are

∂x̃i

∂xj
, i, j ∈ {1, 2, 3}.

We shall in particular interpret Ω̃ as created from Ω by a translation and a deformation. This means
that to the point x we let correspond a point x̃ given by

x̃ = x + u(x),

where u is the displacement vector field. When u is a constant vector, we get a translation. However,
in general u varies in space (as indicated by the notation), such that we have a combination of a
translation and a deformation.

1. Compute J(x, y, z) by introducing u = (ux, uy, uz).

In the Theory of Elasticity the deformations are often small in the sense that the derivative of u is
small, so we can reject all there products.

2. Prove that by this assumption, J = 1 + div u.

3. Finally, prove that the divergence is the relative increase of the volume corresponding to the defor-
mation.

A Transformation of space integrals.

D Calculate the first approximation of the Jacobian.

I 1) The transformation is given by

x̃1 = x + ux(x),

x̃2 = y + uy(x), x = (x, y, z),

x̃3 = z + uz(x),

hence

J(x, y, z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 +
∂ux

∂x

∂uy

∂x

∂uz

∂x

∂ux

∂y
1 +

∂uy

∂y

∂uz

∂y

∂ux

∂z

∂uy

∂z
1 +

∂uz

∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1 +

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
+ products of higher order.
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2) If we remove all products of higher order, then we get

J = 1 + div u.

3) The geometrical interpretation of J is given by

dΩ̃ = |J(x)| dΩ,

where dΩ̃ and dΩ are considered as infinitesimal volumes corresponding to each other. This
may possibly be clarified by

ΔΩ̃ ≈ |J(x)|ΔΩ.

 Transformation of space integrals
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Assume that div u is small, so higher order terms can be rejected. Then

J = 1 + div u > 0,

and thus

dΩ̃ = {1 + div u}dΩ.

The factor 1 + div u indicates the quotient between the two infinitesimal volumes, so div u
can be interpreted as the relative signed increase of the volume.

Example 7.4 Let A ⊂ R
3 be given by

0 ≤ x, 0 ≤ y, 0 ≤ z,
√

x +
√

y +
√

z ≤ 1.

Compute the volume of A and the space integral

I =
∫

A

exp
[(√

x +
√

y +
√

z
)6]

dx dy dz

by introducing the new variables

u =
√

x +
√

y, v =
√

x −√
y, w =

√
x +

√
y +

√
z.

A Transformation of space integrals.

D Find the inverse transformation and compute the Jacobian before the transformation formula is
applied.

0

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

y

0.2

0.4

0.6

0.8

1

x

Figure 53: The domain A.

I We derive from

2
√

x = u + v, 2
√

y = u − v,
√

z = w − u,

that

x =
1
4

(u + v)2, y =
1
4

(u − v)2, z = (w − u)2.

Then find the parametric domain B in the (u, v, w)-space.
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1) The boundary surface x = 0 is mapped into the plane v = −u.

2) The boundary surface y = 0 is mapped into the plane v = u.

3) The boundary surface z = 0 is mapped into the plane w = u.

4) The boundary surface
√

x +
√

y +
√

z = 1 is mapped into the plane w = 1.

The set A is closed and bounded, and the transformation is continuous. It therefore follows from the
second main theorem for continuous functions that A is transformed into the closed and bounded
parametric domain

B = {(u, v, w) | 0 ≤ w ≤ 1, 0 ≤ u ≤ w, −u ≤ v ≤ u}.

Then the Jacobian is given by

∂(x, y, z)
∂(u, v, w)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂w

∂y

∂u

∂y

∂v

∂y

∂w

∂z

∂u

∂z

∂v

∂z

∂w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

1
2 (u + v) 1

2 (u + v) 0

1
2 (u − v) − 1

2 (u − v) 0

−2(w − u) 0 2(w − u)

∣∣∣∣∣∣∣∣∣∣

=
1
2

(u + v) · 1
2

(u − v) · 2(w − u)

∣∣∣∣∣∣
1 1 0
1 −1 0

−1 0 1

∣∣∣∣∣∣
=

1
2
(
u2 − v2

)
(w − u) · (−2) = − (u2 − v2

)
(w − u).

Since v2 ≤ u2 and u ≤ w in B, it follows from the transformation formula that

vol(A) =
∫

A

dΩ =
∫

V

∣∣− (−u2 − v2
)
(w − u)

∣∣ du dv dw

=
∫ 1

0

{∫ w

0

[∫ u

−u

(
u2 − v2

)
(w − u) dv

]
du

}
dw

=
∫ 1

0

{∫ w

0

(w − u) · 4
3

u3 du

}
dw =

∫ 1

0

{
4
3

∫ w

0

(
wu3 − u4

)
du

}
dw

=
∫ 1

0

4
3

[
1
4

wu4 − 1
5

u5

]w

u=0

dw =
∫ 1

0

1
15

w5 dw =
1
90

,

and

I =
∫

A

exp
[(√

x +
√

y +
√

z
)6]

dΩ

=
∫ 1

0

exp
(
w6
){∫ w

0

[∫ u

−u

(
u2 − v2

)
(w − u) dv

]
du

}
dw

=
∫ 1

0

1
15

exp
(
w6
) · w5 dw =

1
90

∫ 1

0

et dt =
e − 1
90

,
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where we also found that∫ w

0

{∫ u

−u

(
u2 − v2

)
(w − u) dv

}
du =

1
15

w5.

Example 7.5 Let B be the triangle given by x ≥ 0, y ≥ 0, x + y ≤ 1. Compute the improper plane
integral

I =
∫

B

exp
(

x − y

x + y

)
dS

by introducing the new variables (u, v) = (x + y, x − y).

A Transformation of an improper plane integral.

D The integrand is not defined at (x, y) = (0, 0) ∈ B. Otherwise, the integrand is positive, so in the
worst case we shall only get that the value becomes +∞.

Find x and y expressed by u and v. Find the parametric domain in the (u, v)-plane. Compute the
Jacobian. Finally, insert into the transformation formula, check if the singularity has any effect
and compute.
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Figure 54: The domain of integration B.

I The transformation is continuous with a continuous inverse:

u = x + y og v = x − y,

x =
1
2

(u + v) og y =
1
2

(u − v).

Furthermore, B is closed and bounded, so by using the second main theorem for continuous
functions we conclude that the image, i.e. the new parametric domain A in the (u, v)-plane is also
closed and bounded. It therefore suffices to find the images of the boundary curves.

1) x = 0 is mapped into u + v = 0, i.e. into v = −u.

2) y = 0 is mapped into u − v = 0, i.e. into v = u.

3) x + y = 1 is mapped into u = 1.

It follows that A in the (u, v)-plane is the triangle which is defined by these three lines, hence

A = {(u, v) | 0 ≤ u ≤ 1, −u ≤ v ≤ u}.

Then compute the Jacobian,

–1

–0.5

0

0.5

1

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

Figure 55: The parametric domain A in the (u, v)-plane.
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∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂u

∂v

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
1
2

1
2

1
2 − 1

2

∣∣∣∣∣∣ = −1
2
.

Finally, by putting into the transformation formula where we also have in mind that the integral
is improper of a positive integrand:

I =
∫

B

exp
(

x − y

x + y

)
dS =

∫
A

exp
( v

u

) ∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ du dv

=
1
2

∫ 1

0

{∫ u

−u

exp
( v

u

)
dv

}
du =

1
2

lim
ε→0+

∫ 1

ε

{∫ u

−u

exp
( v

u

)
dv

}
du

=
1
2

lim
ε→0+

∫ 1

ε

u
[
exp
( v

u

)]u
v=−u

du =
1
2

lim
ε→0+

∫ 1

ε

u
(
e − e−1

)
du

= sinh 1
∫ 1

0

u du =
sinh 1

2
.

Example 7.6 Let A be the tetrahedron which is bounded by the four planes of the equations

x + y + z = 0, x + y − z = 0, x − y − z = 0, 2x − z = 1.

Compute the space integral

I =
∫

A

(x + y + z)(x + y − z)(x − y − z) dx dy dz

by introducing the new variables

u = x + y + z, v = x + y − z, w = x − y − z.

A Transformation of a space integral.

D Find x, y, z expressed by u, v, w. Then find the parametric domain B in the (u, v, w)-space which
is uniquely mapped onto A. Compute the Jacobian, and finally, apply the transformation formula.

I It follows from

u = x + y + z, v = x + y − z, w = x − y − z,

that

u + w = 2x, i.e. x =
1
2

(u + w).

Then

u − v = 2z, i.e. z =
1
2

(u − v)

and

v − w = 2y, i.e. y =
1
2

(v − w).
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Summarizing,

u = x + y + z, v = x + y − z, w = x − y − z,

x =
1
2

(u + w), y =
1
2

(v − w), z =
1
2

(u − v),

and the Jacobian is

∂(x, y, z)
∂(u, v, w)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂w

∂y

∂u

∂y

∂v

∂y

∂w

∂z

∂u

∂z

∂v

∂z

∂w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

1
2 0 1

2

0 1
2 − 1

2

1
2 − 1

2 0

∣∣∣∣∣∣∣∣∣∣
=

1
8

∣∣∣∣∣∣
1 0 1
0 1 −1
1 −1 0

∣∣∣∣∣∣ =
1
8

(−1 − 1) = −1
4
.

Now we shall find the images of the boundary surfaces of the tetrahedron:

1) x + y + z = 0 is mapped into u = 0.

2) x + y − z = 0 is mapped into v = 0.

3) x − y − z = 0 is mapped into w = 0.

4) 2x − z = 1, i.e. 2 = 4x − 2z, is mapped into

2 = 2u + 2w − u + v = u + v + 2w, i.e. u + v + 2w = 2.

0

0.5

1

0.5

1

1.5

2

y

0.5

1

1.5

2

x

Figure 56: The transformed parametric domain B.

The inverse transformation is continuous, and A is closed and bounded. Hence, A is transformed
into a new tetrahedron B as indicated on the figure. Notice that B is cut at the height w ∈ [0, 1[
in the triangle

B(w) = {(u, v) | u ≥ 0, v ≥ 0, u + v ≤ 2(1 − w)}.

This can be exploited in the calculation of the transformed integral by the method of slicing.
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According to the transformation theorem,

I =
∫

A

(x + y + z)(x + y − z)(x − y − z) dx dy dz

=
∫

B

uvw

∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣ du dv dw =
1
4

∫ 1

0

w

{∫
B(w)

uv dS

}
dw.

Then compute the integral over the slice at height w,

∫
B(w)

uv dS =
∫ 2(1−w)

0

u

{∫ 2(1−w)−u

0

v dv

}
du =

∫ 2(1−w)

0

u · 1
2
{2(1 − w) − u}2 du

=
1
2

∫ 2(1−w)

0

{
4(1 − w)2u − 4(1 − w)u2 + u3

}
dy

=
1
2

[
2(1 − w)2u2 − 4

3
(1 − w)u3 +

1
4

u4

]2(1−w)

0

=
1
2

{
2(1 − w)2 · 4(1 − w)2 − 4

3
(1 − w) · 8(1 − w)3 +

1
4
· 16(1 − w)4

}

=
1
2

(1 − w)4
{

8 − 32
3

+ 4
}

=
1
2
· 4
3

(1 − w)4 =
2
3

(w − 1)4.
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Finally, by insertion,

I =
1
4

∫ 1

0

w

{∫
B(w)

uv dS

}
dw =

1
4
· 2
3

∫ 1

0

w(w − 1)4 dw

=
∫

16
∫ 1

0

{
(w − 1)5 + (w − 1)4

}
dw =

1
6

[
1
6

(w − 1)6 +
1
5

(w − 1)5
]1
0

=
1
6

{
−1

6
− 1

5
(−1)

}
=

1
6

(
1
5
− 1

6

)
=

1
180

.

Example 7.7 Let K denote the closed ball of centrum (1, 1, 1) and radius
√

3. We construct a subset
A ⊂ K by only keeping those points from K in A, which furthermore satisfy r ≥ 1 and lie in the first
octant.
Compute the space integral

I =
∫

A

1
r6

dΩ

by introducing the new variables

u =
x

r2
, v =

y

r2
, w =

z

r2
.

A Transformation of a space integral. This is the ‘simplest” non-trivial example in the three dimen-
sional space. We shall see that even in this case the computations grow very big.

D First find A, and then the parametric domain D of the variables (u, v, w). Compute the Jacobian,
and finally also the transformed integral.

0.5

1

1.5

2

2.5

y

0.5 1 1.5 2 2.5

x

Figure 57: The boundary surface of A in each of the three planes x = 0, y = 0, or z = 0.

I The set A is described by

A =
{
(x, y, z) | (x−1)2+(y−)2+(z−1)2≤3, x2+y2+z2≥1, x≥0, y≥0, z≥0

}
.

The boundary surface in each of the planes x = 0, y = 0 and z = 0 is indicated on the figure.
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Then check the image in the (u, v, w)- space of each of the boundary surfaces in the (x, y, z)-space.

Clearly, the boundary surface x2 + y2 + z2 = 1 is mapped into u2 + v2 + z2 = 1, and they both lie
in the first octant.

Then check the transformation of the boundary surface

(x − 1)2 + (y − 1)2 + (z − 1)2 = 3.

If we put

R2 = u2 + v2 + w2 =
x2

r4
+

y2

r4
+

z2

r4
=

1
r2

,

then

x = u · r2 =
u

R2
, y =

v

R2
, z =

w

R2
,

hence by insertion

(u − R2)2 + (c − R2)2 + (w − R2)2 = 3R4,

and thus by a computation

3R4 = u2−2uR2+R4+v2−2vR2+w2−2wR2+R4

= (u2+v2+w2)2(u+v+w)R2+3R4

= R2 − 2(u + v + w)R2 + 3R4 = 3R4 + R2{1 − 2(u + v + w)}.

Now, R2 = u2 + v2 +w2 =
1
r2

> 0, to this is reduced to the equation of a plane surface in the first
octant,

u + v + w =
1
2
.

We conclude that D is that part of the closed first octant, which also lies between the plane

u + v + w =
1
2

and the sphere u2 + v2 + w2 = 1.

Since we have

u + v + w = R{sin θ(cos ϕ + sinϕ) + cos θ}
in spherical coordinates

u = R sin θ cos ϕ, v = R sin θ sinϕ, w = R cos θ,

we get the following description of D in spherical coordinates

D =
{

(R,ϕ, θ) | [2{sin θ(cos ϕ+sin ϕ)+cos θ}]−1≤R≤1, 0≤ϕ, θ≤ π

2

}
.

Then calculate the Jacobian
∂(x, y, x)
∂(u, v, w)

, where we use that

(x, y, z) =
( u

R2
,

v

R2
,

w

R2

)
.
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Figure 58: The domain D lies in the first octant between the two surfaces.

First note that e.g.

∂

∂u

(
1

R2

)
= − 1

R4
· ∂R2

∂u
= − 2u

R4
,
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and similarly of symmetric reasons,

∂

∂v

(
1

R2

)
= − 2v

R4
og

∂

∂w

(
1

R2

)
= −2w

R4
,

Then

∂(x, y, z)
∂(u, v, w)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂w

∂y

∂u

∂y

∂v

∂y

∂w

∂z

∂u

∂z

∂v

∂z

∂w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
R2

− 2u2

R4
−2uv

R4
−2uw

R4

−2uv

R4

1
r2

− 2v2

R4
−2vw

R4

−2uw

R4
−2vw

R4

1
R2

− 2w2

R4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

R12

∣∣∣∣∣∣∣∣∣∣

−u2+v2+w2 −2uv −2uw

−2uv u2−v2+w2 −2vw

−2uw −2vw u2+v2−w2

∣∣∣∣∣∣∣∣∣∣
=

1
R12

{
(R2−2u2)(R2−2v2)(R2−2w2)−8u2v2w2−8u2v2w2

−4u2w2(R2−2v2)−4v2w2(R2− 2u2)−4u2v2(R2−2w2)
}

=
1

R12

{
R6−2(u2+v2+w2)R4+4R2(u2v2+u2w2+v2w2)−24u2v2w2

−4R2(u2w2+v2w2+u2v2)+8u2v2w2+8u2v2w2+8u2v2w2
}

=
1

R12
{−R6} = − 1

R6
.

Finally, we get by the transformation theorem and a consideration of a volume that

I =
∫

A

1
r6

dΩ =
∫

D

R6 · 1
R6

dω =
∫

D

dω = vol(D)

=
1
8
· 4π

3
− 1

3
· 1
2
· 1
2
· 1
2
· 1
2

=
π

6
− 1

48
,

in which the slicing method is latently applied.

 Transformation of space integrals


